matrix.any()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.matrix

matrix.any(axis=None, out=None)

2025-01-10 15:47:30
recarray.strides
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.strides Tuple of bytes to step in each dimension when traversing an array. The byte offset of element

2025-01-10 15:47:30
matrix.strides
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.matrix

matrix.strides Tuple of bytes to step in each dimension when traversing an array. The byte offset of element (i[0]

2025-01-10 15:47:30
recarray.argpartition()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.argpartition(kth, axis=-1, kind='introselect', order=None) Returns the indices that would partition this

2025-01-10 15:47:30
recarray.squeeze()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.squeeze(axis=None) Remove single-dimensional entries from the shape of a. Refer to

2025-01-10 15:47:30
record.var()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.record

record.var() Not implemented (virtual attribute) Class generic exists solely to derive numpy scalars from, and possesses

2025-01-10 15:47:30
recarray.mean()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.mean(axis=None, dtype=None, out=None, keepdims=False) Returns the average of the array elements along given axis

2025-01-10 15:47:30
numpy.lib.user_array.container()
  • References/Python/NumPy/Array objects/Standard array subclasses

class numpy.lib.user_array.container(data, dtype=None, copy=True)

2025-01-10 15:47:30
matrix.getT()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.matrix

matrix.getT()

2025-01-10 15:47:30
recarray.trace()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None) Return the sum along diagonals of the array. Refer

2025-01-10 15:47:30