An introduction to machine learning with scikit-learn
  • References/Python/scikit-learn/Tutorials

Section contents In this section, we introduce the

2025-01-10 15:47:30
sklearn.metrics.median_absolute_error()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.median_absolute_error(y_true, y_pred)

2025-01-10 15:47:30
Pipelining
  • References/Python/scikit-learn/Examples/General examples

The PCA does an unsupervised dimensionality reduction, while the logistic regression does the prediction. We use a GridSearchCV to

2025-01-10 15:47:30
sklearn.metrics.homogeneity_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.homogeneity_score(labels_true, labels_pred)

2025-01-10 15:47:30
ensemble.GradientBoostingRegressor()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.GradientBoostingRegressor(loss='ls', learning_rate=0.1, n_estimators=100, subsample=1.0, criterion='friedman_mse'

2025-01-10 15:47:30
random_projection.SparseRandomProjection()
  • References/Python/scikit-learn/API Reference/random_projection

class sklearn.random_projection.SparseRandomProjection(n_components='auto', density='auto', eps=0.1, dense_output=False

2025-01-10 15:47:30
1.3.
  • References/Python/scikit-learn/Guide

Kernel ridge regression (KRR) [M2012]

2025-01-10 15:47:30
ensemble.GradientBoostingClassifier()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.GradientBoostingClassifier(loss='deviance', learning_rate=0.1, n_estimators=100, subsample=1.0,

2025-01-10 15:47:30
ensemble.ExtraTreesClassifier()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.ExtraTreesClassifier(n_estimators=10, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1

2025-01-10 15:47:30
linear_model.TheilSenRegressor()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.TheilSenRegressor(fit_intercept=True, copy_X=True, max_subpopulation=10000.0, n_subsamples=None,

2025-01-10 15:47:30