sklearn.ensemble.partial_dependence.plot_partial_dependence()
  • References/Python/scikit-learn/API Reference/ensemble

sklearn.ensemble.partial_dependence.plot_partial_dependence(gbrt, X, features, feature_names=None, label=None

2025-01-10 15:47:30
Gaussian Mixture Model Sine Curve
  • References/Python/scikit-learn/Examples/Gaussian Mixture Models

This example demonstrates the behavior of Gaussian mixture models fit on data that was not sampled from a mixture of Gaussian random variables. The dataset

2025-01-10 15:47:30
multiclass.OneVsOneClassifier()
  • References/Python/scikit-learn/API Reference/multiclass

class sklearn.multiclass.OneVsOneClassifier(estimator, n_jobs=1)

2025-01-10 15:47:30
feature_extraction.text.TfidfTransformer()
  • References/Python/scikit-learn/API Reference/feature_extraction

class sklearn.feature_extraction.text.TfidfTransformer(norm=u'l2', use_idf=True, smooth_idf=True, sublinear_tf=False)

2025-01-10 15:47:30
Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation
  • References/Python/scikit-learn/Examples/Examples based on real world datasets

This is an example of applying Non-negative Matrix Factorization and Latent Dirichlet Allocation on a

2025-01-10 15:47:30
sklearn.cross_validation.check_cv()
  • References/Python/scikit-learn/API Reference/cross_validation

Warning DEPRECATED

2025-01-10 15:47:30
Feature agglomeration vs. univariate selection
  • References/Python/scikit-learn/Examples/Clustering

This example compares 2 dimensionality reduction strategies: univariate feature selection with Anova feature

2025-01-10 15:47:30
Hashing feature transformation using Totally Random Trees
  • References/Python/scikit-learn/Examples/Ensemble methods

RandomTreesEmbedding provides a way to map data to a very high-dimensional, sparse representation, which might be beneficial for classification

2025-01-10 15:47:30
sklearn.cluster.ward_tree()
  • References/Python/scikit-learn/API Reference/cluster

sklearn.cluster.ward_tree(X, connectivity=None, n_clusters=None, return_distance=False)

2025-01-10 15:47:30
sklearn.metrics.pairwise.paired_euclidean_distances()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.paired_euclidean_distances(X, Y)

2025-01-10 15:47:30