kernel_approximation.RBFSampler()
  • References/Python/scikit-learn/API Reference/kernel_approximation

class sklearn.kernel_approximation.RBFSampler(gamma=1.0, n_components=100, random_state=None)

2025-01-10 15:47:30
linear_model.RidgeClassifier()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.RidgeClassifier(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001

2025-01-10 15:47:30
sklearn.cluster.affinity_propagation()
  • References/Python/scikit-learn/API Reference/cluster

sklearn.cluster.affinity_propagation(S, preference=None, convergence_iter=15, max_iter=200, damping=0.5, copy=True, verbose=False

2025-01-10 15:47:30
sklearn.model_selection.train_test_split()
  • References/Python/scikit-learn/API Reference/model_selection

sklearn.model_selection.train_test_split(*arrays, **options)

2025-01-10 15:47:30
sklearn.metrics.pairwise.paired_euclidean_distances()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.paired_euclidean_distances(X, Y)

2025-01-10 15:47:30
Libsvm GUI
  • References/Python/scikit-learn/Examples/Examples based on real world datasets

A simple graphical frontend for Libsvm mainly intended for didactic purposes. You can create data points by point and click and visualize the decision region induced by different

2025-01-10 15:47:30
sklearn.ensemble.partial_dependence.plot_partial_dependence()
  • References/Python/scikit-learn/API Reference/ensemble

sklearn.ensemble.partial_dependence.plot_partial_dependence(gbrt, X, features, feature_names=None, label=None

2025-01-10 15:47:30
Nearest Neighbors Classification
  • References/Python/scikit-learn/Examples/Nearest Neighbors

Sample usage of Nearest Neighbors classification. It will plot the decision boundaries for each class.

2025-01-10 15:47:30
SVM: Separating hyperplane for unbalanced classes
  • References/Python/scikit-learn/Examples/Support Vector Machines

Find the optimal separating hyperplane using an SVC for classes that are unbalanced. We first find the separating plane with a plain

2025-01-10 15:47:30
sklearn.covariance.ledoit_wolf()
  • References/Python/scikit-learn/API Reference/covariance

sklearn.covariance.ledoit_wolf(X, assume_centered=False, block_size=1000)

2025-01-10 15:47:30