Section contents In this section, we introduce the
sklearn.metrics.median_absolute_error(y_true, y_pred)
The PCA does an unsupervised dimensionality reduction, while the logistic regression does the prediction. We use a GridSearchCV to
sklearn.metrics.homogeneity_score(labels_true, labels_pred)
class sklearn.ensemble.GradientBoostingRegressor(loss='ls', learning_rate=0.1, n_estimators=100, subsample=1.0, criterion='friedman_mse'
class sklearn.random_projection.SparseRandomProjection(n_components='auto', density='auto', eps=0.1, dense_output=False
Kernel ridge regression (KRR) [M2012]
class sklearn.ensemble.GradientBoostingClassifier(loss='deviance', learning_rate=0.1, n_estimators=100, subsample=1.0,
class sklearn.ensemble.ExtraTreesClassifier(n_estimators=10, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1
class sklearn.linear_model.TheilSenRegressor(fit_intercept=True, copy_X=True, max_subpopulation=10000.0, n_subsamples=None,
Page 1 of 70