Label Propagation digits active learning
  • References/Python/scikit-learn/Examples/Semi Supervised Classification

Demonstrates an active learning technique to learn handwritten digits using label propagation. We start by training a label propagation model

2025-01-10 15:47:30
sklearn.pipeline.make_pipeline()
  • References/Python/scikit-learn/API Reference/pipeline

sklearn.pipeline.make_pipeline(*steps)

2025-01-10 15:47:30
Nearest Neighbors Classification
  • References/Python/scikit-learn/Examples/Nearest Neighbors

Sample usage of Nearest Neighbors classification. It will plot the decision boundaries for each class.

2025-01-10 15:47:30
linear_model.MultiTaskElasticNetCV()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.MultiTaskElasticNetCV(l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True

2025-01-10 15:47:30
1.2.
  • References/Python/scikit-learn/Guide

Linear Discriminant Analysis (

2025-01-10 15:47:30
gaussian_process.GaussianProcessClassifier()
  • References/Python/scikit-learn/API Reference/gaussian_process

class sklearn.gaussian_process.GaussianProcessClassifier(kernel=None, optimizer='fmin_l_bfgs_b', n_restarts_optimizer=0

2025-01-10 15:47:30
preprocessing.MultiLabelBinarizer()
  • References/Python/scikit-learn/API Reference/preprocessing

class sklearn.preprocessing.MultiLabelBinarizer(classes=None, sparse_output=False)

2025-01-10 15:47:30
Lasso path using LARS
  • References/Python/scikit-learn/Examples/Generalized Linear Models

Computes Lasso Path along the regularization parameter using the LARS algorithm on the diabetes dataset. Each color represents a different feature of the coefficient vector

2025-01-10 15:47:30
feature_extraction.text.CountVectorizer()
  • References/Python/scikit-learn/API Reference/feature_extraction

class sklearn.feature_extraction.text.CountVectorizer(input=u'content', encoding=u'utf-8', decode_error=u'strict',

2025-01-10 15:47:30
covariance.ShrunkCovariance()
  • References/Python/scikit-learn/API Reference/covariance

class sklearn.covariance.ShrunkCovariance(store_precision=True, assume_centered=False, shrinkage=0.1)

2025-01-10 15:47:30