Gaussian Mixture Model Sine Curve
  • References/Python/scikit-learn/Examples/Gaussian Mixture Models

This example demonstrates the behavior of Gaussian mixture models fit on data that was not sampled from a mixture of Gaussian random variables. The dataset

2025-01-10 15:47:30
sklearn.cross_validation.check_cv()
  • References/Python/scikit-learn/API Reference/cross_validation

Warning DEPRECATED

2025-01-10 15:47:30
sklearn.metrics.pairwise.linear_kernel()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.linear_kernel(X, Y=None)

2025-01-10 15:47:30
preprocessing.MultiLabelBinarizer()
  • References/Python/scikit-learn/API Reference/preprocessing

class sklearn.preprocessing.MultiLabelBinarizer(classes=None, sparse_output=False)

2025-01-10 15:47:30
linear_model.Ridge()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001, solver='auto',

2025-01-10 15:47:30
Incremental PCA
  • References/Python/scikit-learn/Examples/Decomposition

Incremental principal component analysis (IPCA) is typically used as a replacement for principal component analysis (PCA) when the dataset to be decomposed is too large to fit

2025-01-10 15:47:30
1.2.
  • References/Python/scikit-learn/Guide

Linear Discriminant Analysis (

2025-01-10 15:47:30
One-class SVM with non-linear kernel
  • References/Python/scikit-learn/Examples/Support Vector Machines

An example using a one-class SVM for novelty detection.

2025-01-10 15:47:30
random_projection.SparseRandomProjection()
  • References/Python/scikit-learn/API Reference/random_projection

class sklearn.random_projection.SparseRandomProjection(n_components='auto', density='auto', eps=0.1, dense_output=False

2025-01-10 15:47:30
sklearn.metrics.homogeneity_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.homogeneity_score(labels_true, labels_pred)

2025-01-10 15:47:30