Feature importances with forests of trees
  • References/Python/scikit-learn/Examples/Ensemble methods

This examples shows the use of forests of trees to evaluate the importance of features on an artificial classification task. The red bars are the feature

2025-01-10 15:47:30
preprocessing.MultiLabelBinarizer()
  • References/Python/scikit-learn/API Reference/preprocessing

class sklearn.preprocessing.MultiLabelBinarizer(classes=None, sparse_output=False)

2025-01-10 15:47:30
1.3.
  • References/Python/scikit-learn/Guide

Kernel ridge regression (KRR) [M2012]

2025-01-10 15:47:30
preprocessing.LabelEncoder
  • References/Python/scikit-learn/API Reference/preprocessing

class sklearn.preprocessing.LabelEncoder

2025-01-10 15:47:30
sklearn.preprocessing.scale()
  • References/Python/scikit-learn/API Reference/preprocessing

sklearn.preprocessing.scale(X, axis=0, with_mean=True, with_std=True, copy=True)

2025-01-10 15:47:30
linear_model.SGDRegressor()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.SGDRegressor(loss='squared_loss', penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5

2025-01-10 15:47:30
model_selection.KFold()
  • References/Python/scikit-learn/API Reference/model_selection

class sklearn.model_selection.KFold(n_splits=3, shuffle=False, random_state=None)

2025-01-10 15:47:30
sklearn.metrics.pairwise.linear_kernel()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.linear_kernel(X, Y=None)

2025-01-10 15:47:30
linear_model.OrthogonalMatchingPursuit()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.OrthogonalMatchingPursuit(n_nonzero_coefs=None, tol=None, fit_intercept=True, normalize=True

2025-01-10 15:47:30
Orthogonal Matching Pursuit
  • References/Python/scikit-learn/Examples/Generalized Linear Models

Using orthogonal matching pursuit for recovering a sparse signal from a noisy measurement encoded with a dictionary print(__doc__)

2025-01-10 15:47:30