Libsvm GUI
  • References/Python/scikit-learn/Examples/Examples based on real world datasets

A simple graphical frontend for Libsvm mainly intended for didactic purposes. You can create data points by point and click and visualize the decision region induced by different

2025-01-10 15:47:30
Feature agglomeration vs. univariate selection
  • References/Python/scikit-learn/Examples/Clustering

This example compares 2 dimensionality reduction strategies: univariate feature selection with Anova feature

2025-01-10 15:47:30
Pipeline Anova SVM
  • References/Python/scikit-learn/Examples/Feature Selection

Simple usage of Pipeline that runs successively a univariate feature selection with anova and then a C-SVM of the selected features.

2025-01-10 15:47:30
Nearest Neighbors Classification
  • References/Python/scikit-learn/Examples/Nearest Neighbors

Sample usage of Nearest Neighbors classification. It will plot the decision boundaries for each class.

2025-01-10 15:47:30
Orthogonal Matching Pursuit
  • References/Python/scikit-learn/Examples/Generalized Linear Models

Using orthogonal matching pursuit for recovering a sparse signal from a noisy measurement encoded with a dictionary print(__doc__)

2025-01-10 15:47:30
Train error vs Test error
  • References/Python/scikit-learn/Examples/Model Selection

Illustration of how the performance of an estimator on unseen data (test data) is not the same as the performance on training data. As the regularization increases

2025-01-10 15:47:30
Robust linear model estimation using RANSAC
  • References/Python/scikit-learn/Examples/Generalized Linear Models

In this example we see how to robustly fit a linear model to faulty data using the RANSAC algorithm.

2025-01-10 15:47:30
Pipelining
  • References/Python/scikit-learn/Examples/General examples

The PCA does an unsupervised dimensionality reduction, while the logistic regression does the prediction. We use a GridSearchCV to

2025-01-10 15:47:30
Gaussian Mixture Model Sine Curve
  • References/Python/scikit-learn/Examples/Gaussian Mixture Models

This example demonstrates the behavior of Gaussian mixture models fit on data that was not sampled from a mixture of Gaussian random variables. The dataset

2025-01-10 15:47:30
Discrete versus Real AdaBoost
  • References/Python/scikit-learn/Examples/Ensemble methods

This example is based on Figure 10.2 from Hastie et al 2009 [1] and illustrates the difference in performance between the discrete SAMME [2] boosting algorithm

2025-01-10 15:47:30