Libsvm GUI
  • References/Python/scikit-learn/Examples/Examples based on real world datasets

A simple graphical frontend for Libsvm mainly intended for didactic purposes. You can create data points by point and click and visualize the decision region induced by different

2025-01-10 15:47:30
Nearest Neighbors Classification
  • References/Python/scikit-learn/Examples/Nearest Neighbors

Sample usage of Nearest Neighbors classification. It will plot the decision boundaries for each class.

2025-01-10 15:47:30
SVM: Separating hyperplane for unbalanced classes
  • References/Python/scikit-learn/Examples/Support Vector Machines

Find the optimal separating hyperplane using an SVC for classes that are unbalanced. We first find the separating plane with a plain

2025-01-10 15:47:30
Scalability of Approximate Nearest Neighbors
  • References/Python/scikit-learn/Examples/Nearest Neighbors

This example studies the scalability profile of approximate 10-neighbors queries using the LSHForest with n_estimators=20 and

2025-01-10 15:47:30
Gaussian Mixture Model Sine Curve
  • References/Python/scikit-learn/Examples/Gaussian Mixture Models

This example demonstrates the behavior of Gaussian mixture models fit on data that was not sampled from a mixture of Gaussian random variables. The dataset

2025-01-10 15:47:30
Incremental PCA
  • References/Python/scikit-learn/Examples/Decomposition

Incremental principal component analysis (IPCA) is typically used as a replacement for principal component analysis (PCA) when the dataset to be decomposed is too large to fit

2025-01-10 15:47:30
One-class SVM with non-linear kernel
  • References/Python/scikit-learn/Examples/Support Vector Machines

An example using a one-class SVM for novelty detection.

2025-01-10 15:47:30
Label Propagation digits active learning
  • References/Python/scikit-learn/Examples/Semi Supervised Classification

Demonstrates an active learning technique to learn handwritten digits using label propagation. We start by training a label propagation model

2025-01-10 15:47:30
Lasso path using LARS
  • References/Python/scikit-learn/Examples/Generalized Linear Models

Computes Lasso Path along the regularization parameter using the LARS algorithm on the diabetes dataset. Each color represents a different feature of the coefficient vector

2025-01-10 15:47:30
Orthogonal Matching Pursuit
  • References/Python/scikit-learn/Examples/Generalized Linear Models

Using orthogonal matching pursuit for recovering a sparse signal from a noisy measurement encoded with a dictionary print(__doc__)

2025-01-10 15:47:30