Out-of-core classification of text documents
  • References/Python/scikit-learn/Examples/Examples based on real world datasets

This is an example showing how scikit-learn can be used for classification using an out-of-core approach: learning from data that doesn?t fit into

2025-01-10 15:47:30
Feature importances with forests of trees
  • References/Python/scikit-learn/Examples/Ensemble methods

This examples shows the use of forests of trees to evaluate the importance of features on an artificial classification task. The red bars are the feature

2025-01-10 15:47:30
Orthogonal Matching Pursuit
  • References/Python/scikit-learn/Examples/Generalized Linear Models

Using orthogonal matching pursuit for recovering a sparse signal from a noisy measurement encoded with a dictionary print(__doc__)

2025-01-10 15:47:30
Robust linear model estimation using RANSAC
  • References/Python/scikit-learn/Examples/Generalized Linear Models

In this example we see how to robustly fit a linear model to faulty data using the RANSAC algorithm.

2025-01-10 15:47:30
Hashing feature transformation using Totally Random Trees
  • References/Python/scikit-learn/Examples/Ensemble methods

RandomTreesEmbedding provides a way to map data to a very high-dimensional, sparse representation, which might be beneficial for classification

2025-01-10 15:47:30
Libsvm GUI
  • References/Python/scikit-learn/Examples/Examples based on real world datasets

A simple graphical frontend for Libsvm mainly intended for didactic purposes. You can create data points by point and click and visualize the decision region induced by different

2025-01-10 15:47:30
One-class SVM with non-linear kernel
  • References/Python/scikit-learn/Examples/Support Vector Machines

An example using a one-class SVM for novelty detection.

2025-01-10 15:47:30
Decision boundary of label propagation versus SVM on the Iris dataset
  • References/Python/scikit-learn/Examples/Semi Supervised Classification

Comparison for decision boundary generated on iris dataset between Label Propagation and SVM. This demonstrates

2025-01-10 15:47:30
Pipelining
  • References/Python/scikit-learn/Examples/General examples

The PCA does an unsupervised dimensionality reduction, while the logistic regression does the prediction. We use a GridSearchCV to

2025-01-10 15:47:30
Discrete versus Real AdaBoost
  • References/Python/scikit-learn/Examples/Ensemble methods

This example is based on Figure 10.2 from Hastie et al 2009 [1] and illustrates the difference in performance between the discrete SAMME [2] boosting algorithm

2025-01-10 15:47:30