Gaussian Mixture Model Sine Curve
  • References/Python/scikit-learn/Examples/Gaussian Mixture Models

This example demonstrates the behavior of Gaussian mixture models fit on data that was not sampled from a mixture of Gaussian random variables. The dataset

2025-01-10 15:47:30
Selecting the number of clusters with silhouette analysis on KMeans clustering
  • References/Python/scikit-learn/Examples/Clustering

Silhouette analysis can be used to study the separation distance between the resulting clusters. The silhouette

2025-01-10 15:47:30
Libsvm GUI
  • References/Python/scikit-learn/Examples/Examples based on real world datasets

A simple graphical frontend for Libsvm mainly intended for didactic purposes. You can create data points by point and click and visualize the decision region induced by different

2025-01-10 15:47:30
Plot Ridge coefficients as a function of the L2 regularization
  • References/Python/scikit-learn/Examples/Generalized Linear Models

Ridge Regression is the estimator used in this example. Each color in the left plot represents one different dimension of the coefficient vector, and this is displayed as a function of the regularization parameter. The right plot shows how exact the solution is. This example illustrates how a well defined solution is found by Ridge regression and how regularization affects the coefficients and their values. The plot on the right shows how the difference of the coefficients from the estimator c

2025-01-10 15:47:30
Comparison of Manifold Learning methods
  • References/Python/scikit-learn/Examples/Manifold learning

An illustration of dimensionality reduction on the S-curve dataset with various manifold learning methods. For a discussion and comparison of

2025-01-10 15:47:30
SVM: Weighted samples
  • References/Python/scikit-learn/Examples/Support Vector Machines

Plot decision function of a weighted dataset, where the size of points is proportional to its weight. The sample weighting rescales the C parameter, which means

2025-01-10 15:47:30
SVM with custom kernel
  • References/Python/scikit-learn/Examples/Support Vector Machines

Simple usage of Support Vector Machines to classify a sample. It will plot the decision surface and the support vectors.

2025-01-10 15:47:30
OOB Errors for Random Forests
  • References/Python/scikit-learn/Examples/Ensemble methods

The RandomForestClassifier is trained using bootstrap aggregation, where each new tree is fit from a bootstrap sample of the training observations

2025-01-10 15:47:30
Cross-validation on Digits Dataset Exercise
  • References/Python/scikit-learn/Examples/Tutorial exercises

A tutorial exercise using Cross-validation with an SVM on the Digits dataset. This exercise is used in the

2025-01-10 15:47:30
Linear and Quadratic Discriminant Analysis with confidence ellipsoid
  • References/Python/scikit-learn/Examples/Classification

Plot the confidence ellipsoids of each class and decision boundary print(__doc__)

2025-01-10 15:47:30