numpy.polynomial.legendre.legline()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Legendre Module

numpy.polynomial.legendre.legline(off, scl)

2025-01-10 15:47:30
numpy.info()
  • References/Python/NumPy/Routines/NumPy-specific help functions

numpy.info(object=None, maxwidth=76, output=', mode 'w' at 0x402ae078>, toplevel='numpy')

2025-01-10 15:47:30
chararray.rsplit()
  • References/Python/NumPy/Routines/String operations/numpy.core.defchararray.chararray

chararray.rsplit(sep=None, maxsplit=None)

2025-01-10 15:47:30
numpy.polynomial.legendre.Legendre()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Legendre Module

class numpy.polynomial.legendre.Legendre(coef, domain=None, window=None)

2025-01-10 15:47:30
numpy.polynomial.hermite_e.hermevander3d()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/HermiteE Module, “Probabilists’”

numpy.polynomial.hermite_e.hermevander3d(x, y, z, deg)

2025-01-10 15:47:30
numpy.find_common_type()
  • References/Python/NumPy/Routines/Data type routines

numpy.find_common_type(array_types, scalar_types)

2025-01-10 15:47:30
Elementary Function
  • References/Python/NumPy/NumPy C-API

There is a general need for looping over not only functions on scalars but also over functions on vectors (or arrays). This concept is realized in Numpy by generalizing the universal functions (ufuncs)

2025-01-10 15:47:30
recarray.dtype
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.dtype Data-type of the array?s elements.

2025-01-10 15:47:30
numpy.polynomial.chebyshev.chebweight()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Chebyshev Module

numpy.polynomial.chebyshev.chebweight(x)

2025-01-10 15:47:30
numpy.polynomial.laguerre.lagzero
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Laguerre Module

numpy.polynomial.laguerre.lagzero = array([0])

2025-01-10 15:47:30