numpy.ma.choose()
  • References/Python/NumPy/Routines/Masked array operations

numpy.ma.choose(indices, choices, out=None, mode='raise')

2025-01-10 15:47:30
numpy.ma.loads()
  • References/Python/NumPy/Routines/Masked array operations

numpy.ma.loads(strg)

2025-01-10 15:47:30
Laguerre.degree()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Laguerre Module

Laguerre.degree()

2025-01-10 15:47:30
numpy.polynomial.hermite.hermvander()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Hermite Module, “Physicists’”

numpy.polynomial.hermite.hermvander(x, deg)

2025-01-10 15:47:30
chararray.flatten()
  • References/Python/NumPy/Routines/String operations/numpy.core.defchararray.chararray

chararray.flatten(order='C') Return a copy of the array collapsed into one dimension.

2025-01-10 15:47:30
numpy.polynomial.legendre.legadd()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Legendre Module

numpy.polynomial.legendre.legadd(c1, c2)

2025-01-10 15:47:30
Mathematical functions with automatic domain (numpy.emath)
  • References/Python/NumPy/Routines

Note numpy.emath is a preferred alias for

2025-01-10 15:47:30
HermiteE.roots()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/HermiteE Module, “Probabilists’”

HermiteE.roots()

2025-01-10 15:47:30
RandomState.standard_cauchy()
  • References/Python/NumPy/Routines/Random sampling

RandomState.standard_cauchy(size=None) Draw samples from a standard Cauchy distribution with mode =

2025-01-10 15:47:30
Laguerre.truncate()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Laguerre Module

Laguerre.truncate(size)

2025-01-10 15:47:30