numpy.nanpercentile()
  • References/Python/NumPy/Routines/Statistics

numpy.nanpercentile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=False)

2025-01-10 15:47:30
numpy.nanmedian()
  • References/Python/NumPy/Routines/Statistics

numpy.nanmedian(a, axis=None, out=None, overwrite_input=False, keepdims=False)

2025-01-10 15:47:30
numpy.cov()
  • References/Python/NumPy/Routines/Statistics

numpy.cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None)

2025-01-10 15:47:30
numpy.mean()
  • References/Python/NumPy/Routines/Statistics

numpy.mean(a, axis=None, dtype=None, out=None, keepdims=False)

2025-01-10 15:47:30
numpy.nanmean()
  • References/Python/NumPy/Routines/Statistics

numpy.nanmean(a, axis=None, dtype=None, out=None, keepdims=False)

2025-01-10 15:47:30
numpy.median()
  • References/Python/NumPy/Routines/Statistics

numpy.median(a, axis=None, out=None, overwrite_input=False, keepdims=False)

2025-01-10 15:47:30
numpy.average()
  • References/Python/NumPy/Routines/Statistics

numpy.average(a, axis=None, weights=None, returned=False)

2025-01-10 15:47:30
numpy.correlate()
  • References/Python/NumPy/Routines/Statistics

numpy.correlate(a, v, mode='valid')

2025-01-10 15:47:30
numpy.var()
  • References/Python/NumPy/Routines/Statistics

numpy.var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)

2025-01-10 15:47:30
numpy.percentile()
  • References/Python/NumPy/Routines/Statistics

numpy.percentile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=False)

2025-01-10 15:47:30