numpy.ptp()
  • References/Python/NumPy/Routines/Statistics

numpy.ptp(a, axis=None, out=None)

2025-01-10 15:47:30
numpy.nanmin()
  • References/Python/NumPy/Routines/Statistics

numpy.nanmin(a, axis=None, out=None, keepdims=False)

2025-01-10 15:47:30
numpy.var()
  • References/Python/NumPy/Routines/Statistics

numpy.var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)

2025-01-10 15:47:30
numpy.histogramdd()
  • References/Python/NumPy/Routines/Statistics

numpy.histogramdd(sample, bins=10, range=None, normed=False, weights=None)

2025-01-10 15:47:30
numpy.bincount()
  • References/Python/NumPy/Routines/Statistics

numpy.bincount(x, weights=None, minlength=None) Count number of occurrences of each value in array of non-negative ints.

2025-01-10 15:47:30
numpy.histogram2d()
  • References/Python/NumPy/Routines/Statistics

numpy.histogram2d(x, y, bins=10, range=None, normed=False, weights=None)

2025-01-10 15:47:30
numpy.nanstd()
  • References/Python/NumPy/Routines/Statistics

numpy.nanstd(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)

2025-01-10 15:47:30
numpy.corrcoef()
  • References/Python/NumPy/Routines/Statistics

numpy.corrcoef(x, y=None, rowvar=1, bias=, ddof=)

2025-01-10 15:47:30
numpy.histogram()
  • References/Python/NumPy/Routines/Statistics

numpy.histogram(a, bins=10, range=None, normed=False, weights=None, density=None)

2025-01-10 15:47:30
numpy.nanvar()
  • References/Python/NumPy/Routines/Statistics

numpy.nanvar(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)

2025-01-10 15:47:30