numpy.polynomial.hermite_e.hermemulx()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/HermiteE Module, “Probabilists’”

numpy.polynomial.hermite_e.hermemulx(c)

2025-01-10 15:47:30
numpy.polynomial.legendre.legone
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Legendre Module

numpy.polynomial.legendre.legone = array([1])

2025-01-10 15:47:30
numpy.polynomial.polynomial.polymulx()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Polynomial Module

numpy.polynomial.polynomial.polymulx(c)

2025-01-10 15:47:30
numpy.ma.clump_masked()
  • References/Python/NumPy/Routines/Masked array operations

numpy.ma.clump_masked(a)

2025-01-10 15:47:30
chararray.T
  • References/Python/NumPy/Routines/String operations/numpy.core.defchararray.chararray

chararray.T Same as self.transpose(), except that self is returned if self.ndim < 2.

2025-01-10 15:47:30
numpy.savez_compressed()
  • References/Python/NumPy/Routines/Input and output

numpy.savez_compressed(file, *args, **kwds)

2025-01-10 15:47:30
numpy.reciprocal()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.reciprocal(x[, out]) = Return the reciprocal of the argument, element-wise. Calculates 1/x.

2025-01-10 15:47:30
numpy.npv()
  • References/Python/NumPy/Routines/Financial functions

numpy.npv(rate, values)

2025-01-10 15:47:30
numpy.nanpercentile()
  • References/Python/NumPy/Routines/Statistics

numpy.nanpercentile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=False)

2025-01-10 15:47:30
numpy.promote_types()
  • References/Python/NumPy/Routines/Data type routines

numpy.promote_types(type1, type2) Returns the data type with the smallest size and smallest scalar kind to which both type1

2025-01-10 15:47:30