SVM: Weighted samples
  • References/Python/scikit-learn/Examples/Support Vector Machines

Plot decision function of a weighted dataset, where the size of points is proportional to its weight. The sample weighting rescales the C parameter, which means

2025-01-10 15:47:30
Underfitting vs.
  • References/Python/scikit-learn/Examples/Model Selection

This example demonstrates the problems of underfitting and overfitting and how we can use linear regression with polynomial features to approximate nonlinear functions

2025-01-10 15:47:30
Feature agglomeration vs. univariate selection
  • References/Python/scikit-learn/Examples/Clustering

This example compares 2 dimensionality reduction strategies: univariate feature selection with Anova feature

2025-01-10 15:47:30
Robust Scaling on Toy Data
  • References/Python/scikit-learn/Examples/Preprocessing

Making sure that each Feature has approximately the same scale can be a crucial preprocessing step. However, when data contains outliers,

2025-01-10 15:47:30
SGD: convex loss functions
  • References/Python/scikit-learn/Examples/Generalized Linear Models

A plot that compares the various convex loss functions supported by

2025-01-10 15:47:30
The Digit Dataset
  • References/Python/scikit-learn/Examples/Dataset examples

This dataset is made up of 1797 8x8 images. Each image, like the one shown below, is of a hand-written digit. In order to utilize an 8x8 figure like this, we?d have to first

2025-01-10 15:47:30
SVM with custom kernel
  • References/Python/scikit-learn/Examples/Support Vector Machines

Simple usage of Support Vector Machines to classify a sample. It will plot the decision surface and the support vectors.

2025-01-10 15:47:30
Train error vs Test error
  • References/Python/scikit-learn/Examples/Model Selection

Illustration of how the performance of an estimator on unseen data (test data) is not the same as the performance on training data. As the regularization increases

2025-01-10 15:47:30
Gradient Boosting Out-of-Bag estimates
  • References/Python/scikit-learn/Examples/Ensemble methods

Out-of-bag (OOB) estimates can be a useful heuristic to estimate the ?optimal? number of boosting iterations. OOB estimates are almost identical to cross-validation

2025-01-10 15:47:30
Recognizing hand-written digits
  • References/Python/scikit-learn/Examples/Classification

An example showing how the scikit-learn can be used to recognize images of hand-written digits. This example is commented in the

2025-01-10 15:47:30