Feature importances with forests of trees
  • References/Python/scikit-learn/Examples/Ensemble methods

This examples shows the use of forests of trees to evaluate the importance of features on an artificial classification task. The red bars are the feature

2025-01-10 15:47:30
Gradient Boosting Out-of-Bag estimates
  • References/Python/scikit-learn/Examples/Ensemble methods

Out-of-bag (OOB) estimates can be a useful heuristic to estimate the ?optimal? number of boosting iterations. OOB estimates are almost identical to cross-validation

2025-01-10 15:47:30
Orthogonal Matching Pursuit
  • References/Python/scikit-learn/Examples/Generalized Linear Models

Using orthogonal matching pursuit for recovering a sparse signal from a noisy measurement encoded with a dictionary print(__doc__)

2025-01-10 15:47:30
SVM with custom kernel
  • References/Python/scikit-learn/Examples/Support Vector Machines

Simple usage of Support Vector Machines to classify a sample. It will plot the decision surface and the support vectors.

2025-01-10 15:47:30
Concentration Prior Type Analysis of Variation Bayesian Gaussian Mixture
  • References/Python/scikit-learn/Examples/Gaussian Mixture Models

This example plots the ellipsoids obtained from a toy dataset (mixture of three Gaussians) fitted by the Baye

2025-01-10 15:47:30
Libsvm GUI
  • References/Python/scikit-learn/Examples/Examples based on real world datasets

A simple graphical frontend for Libsvm mainly intended for didactic purposes. You can create data points by point and click and visualize the decision region induced by different

2025-01-10 15:47:30
OOB Errors for Random Forests
  • References/Python/scikit-learn/Examples/Ensemble methods

The RandomForestClassifier is trained using bootstrap aggregation, where each new tree is fit from a bootstrap sample of the training observations

2025-01-10 15:47:30
One-class SVM with non-linear kernel
  • References/Python/scikit-learn/Examples/Support Vector Machines

An example using a one-class SVM for novelty detection.

2025-01-10 15:47:30
Pipeline Anova SVM
  • References/Python/scikit-learn/Examples/Feature Selection

Simple usage of Pipeline that runs successively a univariate feature selection with anova and then a C-SVM of the selected features.

2025-01-10 15:47:30
Feature agglomeration vs. univariate selection
  • References/Python/scikit-learn/Examples/Clustering

This example compares 2 dimensionality reduction strategies: univariate feature selection with Anova feature

2025-01-10 15:47:30