Simple usage of Pipeline that runs successively a univariate feature selection with anova and then a C-SVM of the selected features.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | print (__doc__) from sklearn import svm from sklearn.datasets import samples_generator from sklearn.feature_selection import SelectKBest, f_regression from sklearn.pipeline import make_pipeline # import some data to play with X, y = samples_generator.make_classification( n_features = 20 , n_informative = 3 , n_redundant = 0 , n_classes = 4 , n_clusters_per_class = 2 ) # ANOVA SVM-C # 1) anova filter, take 3 best ranked features anova_filter = SelectKBest(f_regression, k = 3 ) # 2) svm clf = svm.SVC(kernel = 'linear' ) anova_svm = make_pipeline(anova_filter, clf) anova_svm.fit(X, y) anova_svm.predict(X) |
Total running time of the script: (0 minutes 0.000 seconds)
Download Python source code:
feature_selection_pipeline.py
Download IPython notebook:
feature_selection_pipeline.ipynb
Please login to continue.