Pipeline Anova SVM

Simple usage of Pipeline that runs successively a univariate feature selection with anova and then a C-SVM of the selected features.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
print(__doc__)
 
from sklearn import svm
from sklearn.datasets import samples_generator
from sklearn.feature_selection import SelectKBest, f_regression
from sklearn.pipeline import make_pipeline
 
# import some data to play with
X, y = samples_generator.make_classification(
    n_features=20, n_informative=3, n_redundant=0, n_classes=4,
    n_clusters_per_class=2)
 
# ANOVA SVM-C
# 1) anova filter, take 3 best ranked features
anova_filter = SelectKBest(f_regression, k=3)
# 2) svm
clf = svm.SVC(kernel='linear')
 
anova_svm = make_pipeline(anova_filter, clf)
anova_svm.fit(X, y)
anova_svm.predict(X)

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: feature_selection_pipeline.py
Download IPython notebook: feature_selection_pipeline.ipynb
doc_scikit_learn
2025-01-10 15:47:30
Comments
Leave a Comment

Please login to continue.