Label Propagation digits active learning
  • References/Python/scikit-learn/Examples/Semi Supervised Classification

Demonstrates an active learning technique to learn handwritten digits using label propagation. We start by training a label propagation model

2025-01-10 15:47:30
Lasso path using LARS
  • References/Python/scikit-learn/Examples/Generalized Linear Models

Computes Lasso Path along the regularization parameter using the LARS algorithm on the diabetes dataset. Each color represents a different feature of the coefficient vector

2025-01-10 15:47:30
ensemble.ExtraTreesClassifier()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.ExtraTreesClassifier(n_estimators=10, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1

2025-01-10 15:47:30
preprocessing.StandardScaler()
  • References/Python/scikit-learn/API Reference/preprocessing

class sklearn.preprocessing.StandardScaler(copy=True, with_mean=True, with_std=True)

2025-01-10 15:47:30
Orthogonal Matching Pursuit
  • References/Python/scikit-learn/Examples/Generalized Linear Models

Using orthogonal matching pursuit for recovering a sparse signal from a noisy measurement encoded with a dictionary print(__doc__)

2025-01-10 15:47:30
neural_network.MLPRegressor()
  • References/Python/scikit-learn/API Reference/neural_network

class sklearn.neural_network.MLPRegressor(hidden_layer_sizes=(100, ), activation='relu', solver='adam', alpha=0.0001, batch_size='auto'

2025-01-10 15:47:30
sklearn.metrics.median_absolute_error()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.median_absolute_error(y_true, y_pred)

2025-01-10 15:47:30
svm.OneClassSVM()
  • References/Python/scikit-learn/API Reference/svm

class sklearn.svm.OneClassSVM(kernel='rbf', degree=3, gamma='auto', coef0=0.0, tol=0.001, nu=0.5, shrinking=True, cache_size=200, verbose=False

2025-01-10 15:47:30
Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation
  • References/Python/scikit-learn/Examples/Examples based on real world datasets

This is an example of applying Non-negative Matrix Factorization and Latent Dirichlet Allocation on a

2025-01-10 15:47:30
Supervised learning
  • References/Python/scikit-learn/Tutorials

The problem solved in supervised learning

2025-01-10 15:47:30