class sklearn.multiclass.OneVsOneClassifier(estimator, n_jobs=1)
class sklearn.decomposition.SparseCoder(dictionary, transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None
sklearn.metrics.pairwise.paired_manhattan_distances(X, Y)
sklearn.metrics.pairwise.paired_euclidean_distances(X, Y)
sklearn.metrics.median_absolute_error(y_true, y_pred)
class sklearn.kernel_ridge.KernelRidge(alpha=1, kernel='linear', gamma=None, degree=3, coef0=1, kernel_params=None)
class sklearn.cluster.MeanShift(bandwidth=None, seeds=None, bin_seeding=False, min_bin_freq=1, cluster_all=True, n_jobs=1)
This submodule contains functions that approximate the feature mappings that correspond to certain kernels, as they are used for example in support vector machines (see
class sklearn.model_selection.GroupShuffleSplit(n_splits=5, test_size=0.2, train_size=None, random_state=None)
Hyper-parameters are parameters that are not directly learnt within estimators. In scikit-learn they are passed as arguments to the constructor of
Page 4 of 70