mixture.GaussianMixture()
  • References/Python/scikit-learn/API Reference/mixture

class sklearn.mixture.GaussianMixture(n_components=1, covariance_type='full', tol=0.001, reg_covar=1e-06, max_iter=100, n_init=1,

2025-01-10 15:47:30
kernel_ridge.KernelRidge()
  • References/Python/scikit-learn/API Reference/kernel_ridge

class sklearn.kernel_ridge.KernelRidge(alpha=1, kernel='linear', gamma=None, degree=3, coef0=1, kernel_params=None)

2025-01-10 15:47:30
Sparse inverse covariance estimation
  • References/Python/scikit-learn/Examples/Covariance estimation

Using the GraphLasso estimator to learn a covariance and sparse precision from a small number of samples. To estimate a probabilistic model (e.g

2025-01-10 15:47:30
sklearn.metrics.pairwise.linear_kernel()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.linear_kernel(X, Y=None)

2025-01-10 15:47:30
2.4.
  • References/Python/scikit-learn/Guide

Biclustering can be performed with the module

2025-01-10 15:47:30
Concentration Prior Type Analysis of Variation Bayesian Gaussian Mixture
  • References/Python/scikit-learn/Examples/Gaussian Mixture Models

This example plots the ellipsoids obtained from a toy dataset (mixture of three Gaussians) fitted by the Baye

2025-01-10 15:47:30
Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation
  • References/Python/scikit-learn/Examples/Examples based on real world datasets

This is an example of applying Non-negative Matrix Factorization and Latent Dirichlet Allocation on a

2025-01-10 15:47:30
3.4.
  • References/Python/scikit-learn/Guide

After training a scikit-learn model, it is desirable to have a way to persist the model for future use without having to retrain. The following section gives you an example

2025-01-10 15:47:30
sklearn.cluster.k_means()
  • References/Python/scikit-learn/API Reference/cluster

sklearn.cluster.k_means(X, n_clusters, init='k-means++', precompute_distances='auto', n_init=10, max_iter=300, verbose=False, tol=0.0001

2025-01-10 15:47:30
linear_model.HuberRegressor()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.HuberRegressor(epsilon=1.35, max_iter=100, alpha=0.0001, warm_start=False, fit_intercept=True, tol=1e-05)

2025-01-10 15:47:30