ensemble.ExtraTreesRegressor()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.ExtraTreesRegressor(n_estimators=10, criterion='mse', max_depth=None, min_samples_split=2, min_samples_leaf=1

2025-01-10 15:47:30
SGD: convex loss functions
  • References/Python/scikit-learn/Examples/Generalized Linear Models

A plot that compares the various convex loss functions supported by

2025-01-10 15:47:30
Robust Scaling on Toy Data
  • References/Python/scikit-learn/Examples/Preprocessing

Making sure that each Feature has approximately the same scale can be a crucial preprocessing step. However, when data contains outliers,

2025-01-10 15:47:30
SVM: Separating hyperplane for unbalanced classes
  • References/Python/scikit-learn/Examples/Support Vector Machines

Find the optimal separating hyperplane using an SVC for classes that are unbalanced. We first find the separating plane with a plain

2025-01-10 15:47:30
decomposition.MiniBatchSparsePCA()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.MiniBatchSparsePCA(n_components=None, alpha=1, ridge_alpha=0.01, n_iter=100, callback=None, batch_size=3

2025-01-10 15:47:30
sklearn.preprocessing.scale()
  • References/Python/scikit-learn/API Reference/preprocessing

sklearn.preprocessing.scale(X, axis=0, with_mean=True, with_std=True, copy=True)

2025-01-10 15:47:30
sklearn.model_selection.train_test_split()
  • References/Python/scikit-learn/API Reference/model_selection

sklearn.model_selection.train_test_split(*arrays, **options)

2025-01-10 15:47:30
sklearn.metrics.pairwise.paired_euclidean_distances()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.paired_euclidean_distances(X, Y)

2025-01-10 15:47:30
Pipelining
  • References/Python/scikit-learn/Examples/General examples

The PCA does an unsupervised dimensionality reduction, while the logistic regression does the prediction. We use a GridSearchCV to

2025-01-10 15:47:30
sklearn.linear_model.lasso_path()
  • References/Python/scikit-learn/API Reference/linear_model

sklearn.linear_model.lasso_path(X, y, eps=0.001, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None

2025-01-10 15:47:30