linear_model.OrthogonalMatchingPursuit()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.OrthogonalMatchingPursuit(n_nonzero_coefs=None, tol=None, fit_intercept=True, normalize=True

2025-01-10 15:47:30
sklearn.cluster.ward_tree()
  • References/Python/scikit-learn/API Reference/cluster

sklearn.cluster.ward_tree(X, connectivity=None, n_clusters=None, return_distance=False)

2025-01-10 15:47:30
An introduction to machine learning with scikit-learn
  • References/Python/scikit-learn/Tutorials

Section contents In this section, we introduce the

2025-01-10 15:47:30
3.2.
  • References/Python/scikit-learn/Guide

Hyper-parameters are parameters that are not directly learnt within estimators. In scikit-learn they are passed as arguments to the constructor of

2025-01-10 15:47:30
neighbors.BallTree
  • References/Python/scikit-learn/API Reference/neighbors

class sklearn.neighbors.BallTree BallTree for fast generalized N-point problems BallTree(X, leaf_size=40, metric=

2025-01-10 15:47:30
multiclass.OneVsOneClassifier()
  • References/Python/scikit-learn/API Reference/multiclass

class sklearn.multiclass.OneVsOneClassifier(estimator, n_jobs=1)

2025-01-10 15:47:30
preprocessing.LabelEncoder
  • References/Python/scikit-learn/API Reference/preprocessing

class sklearn.preprocessing.LabelEncoder

2025-01-10 15:47:30
discriminant_analysis.QuadraticDiscriminantAnalysis()
  • References/Python/scikit-learn/API Reference/discriminant_analysis

class sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis(priors=None, reg_param=0.0, store_covariances=False

2025-01-10 15:47:30
Scalability of Approximate Nearest Neighbors
  • References/Python/scikit-learn/Examples/Nearest Neighbors

This example studies the scalability profile of approximate 10-neighbors queries using the LSHForest with n_estimators=20 and

2025-01-10 15:47:30
linear_model.OrthogonalMatchingPursuitCV()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.OrthogonalMatchingPursuitCV(copy=True, fit_intercept=True, normalize=True, max_iter=None

2025-01-10 15:47:30