Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation
  • References/Python/scikit-learn/Examples/Examples based on real world datasets

This is an example of applying Non-negative Matrix Factorization and Latent Dirichlet Allocation on a

2025-01-10 15:47:30
discriminant_analysis.QuadraticDiscriminantAnalysis()
  • References/Python/scikit-learn/API Reference/discriminant_analysis

class sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis(priors=None, reg_param=0.0, store_covariances=False

2025-01-10 15:47:30
sklearn.linear_model.lasso_path()
  • References/Python/scikit-learn/API Reference/linear_model

sklearn.linear_model.lasso_path(X, y, eps=0.001, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None

2025-01-10 15:47:30
sklearn.model_selection.train_test_split()
  • References/Python/scikit-learn/API Reference/model_selection

sklearn.model_selection.train_test_split(*arrays, **options)

2025-01-10 15:47:30
decomposition.MiniBatchSparsePCA()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.MiniBatchSparsePCA(n_components=None, alpha=1, ridge_alpha=0.01, n_iter=100, callback=None, batch_size=3

2025-01-10 15:47:30
SGD: convex loss functions
  • References/Python/scikit-learn/Examples/Generalized Linear Models

A plot that compares the various convex loss functions supported by

2025-01-10 15:47:30
sklearn.ensemble.partial_dependence.partial_dependence()
  • References/Python/scikit-learn/API Reference/ensemble

sklearn.ensemble.partial_dependence.partial_dependence(gbrt, target_variables, grid=None, X=None, percentiles=(0

2025-01-10 15:47:30
Out-of-core classification of text documents
  • References/Python/scikit-learn/Examples/Examples based on real world datasets

This is an example showing how scikit-learn can be used for classification using an out-of-core approach: learning from data that doesn?t fit into

2025-01-10 15:47:30
neighbors.NearestCentroid()
  • References/Python/scikit-learn/API Reference/neighbors

class sklearn.neighbors.NearestCentroid(metric='euclidean', shrink_threshold=None)

2025-01-10 15:47:30
SVM: Weighted samples
  • References/Python/scikit-learn/Examples/Support Vector Machines

Plot decision function of a weighted dataset, where the size of points is proportional to its weight. The sample weighting rescales the C parameter, which means

2025-01-10 15:47:30