Orthogonal Matching Pursuit
  • References/Python/scikit-learn/Examples/Generalized Linear Models

Using orthogonal matching pursuit for recovering a sparse signal from a noisy measurement encoded with a dictionary print(__doc__)

2025-01-10 15:47:30
preprocessing.LabelEncoder
  • References/Python/scikit-learn/API Reference/preprocessing

class sklearn.preprocessing.LabelEncoder

2025-01-10 15:47:30
Hashing feature transformation using Totally Random Trees
  • References/Python/scikit-learn/Examples/Ensemble methods

RandomTreesEmbedding provides a way to map data to a very high-dimensional, sparse representation, which might be beneficial for classification

2025-01-10 15:47:30
decomposition.SparseCoder()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.SparseCoder(dictionary, transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None

2025-01-10 15:47:30
2.3.
  • References/Python/scikit-learn/Guide

Clustering of unlabeled data can be performed with the module

2025-01-10 15:47:30
4.1.
  • References/Python/scikit-learn/Guide

4.1.1. Pipeline: chaining estimators

2025-01-10 15:47:30
Scalability of Approximate Nearest Neighbors
  • References/Python/scikit-learn/Examples/Nearest Neighbors

This example studies the scalability profile of approximate 10-neighbors queries using the LSHForest with n_estimators=20 and

2025-01-10 15:47:30
gaussian_process.kernels.Matern()
  • References/Python/scikit-learn/API Reference/gaussian_process

class sklearn.gaussian_process.kernels.Matern(length_scale=1.0, length_scale_bounds=(1e-05, 100000.0), nu=1.5)

2025-01-10 15:47:30
feature_extraction.text.TfidfTransformer()
  • References/Python/scikit-learn/API Reference/feature_extraction

class sklearn.feature_extraction.text.TfidfTransformer(norm=u'l2', use_idf=True, smooth_idf=True, sublinear_tf=False)

2025-01-10 15:47:30
Feature importances with forests of trees
  • References/Python/scikit-learn/Examples/Ensemble methods

This examples shows the use of forests of trees to evaluate the importance of features on an artificial classification task. The red bars are the feature

2025-01-10 15:47:30