-
class sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis(priors=None, reg_param=0.0, store_covariances=False, tol=0.0001)
[source] -
Quadratic Discriminant Analysis
A classifier with a quadratic decision boundary, generated by fitting class conditional densities to the data and using Bayes? rule.
The model fits a Gaussian density to each class.
New in version 0.17: QuadraticDiscriminantAnalysis
Read more in the User Guide.
Parameters: priors : array, optional, shape = [n_classes]
Priors on classes
reg_param : float, optional
Regularizes the covariance estimate as
(1-reg_param)*Sigma + reg_param*np.eye(n_features)
Attributes: covariances_ : list of array-like, shape = [n_features, n_features]
Covariance matrices of each class.
means_ : array-like, shape = [n_classes, n_features]
Class means.
priors_ : array-like, shape = [n_classes]
Class priors (sum to 1).
rotations_ : list of arrays
For each class k an array of shape [n_features, n_k], with
n_k = min(n_features, number of elements in class k)
It is the rotation of the Gaussian distribution, i.e. its principal axis.scalings_ : list of arrays
For each class k an array of shape [n_k]. It contains the scaling of the Gaussian distributions along its principal axes, i.e. the variance in the rotated coordinate system.
store_covariances : boolean
If True the covariance matrices are computed and stored in the
self.covariances_
attribute.New in version 0.17.
tol : float, optional, default 1.0e-4
Threshold used for rank estimation.
New in version 0.17.
See also
-
sklearn.discriminant_analysis.LinearDiscriminantAnalysis
- Linear Discriminant Analysis
Examples
1234567891011>>>
from
sklearn.discriminant_analysis
import
QuadraticDiscriminantAnalysis
>>>
import
numpy as np
>>> X
=
np.array([[
-
1
,
-
1
], [
-
2
,
-
1
], [
-
3
,
-
2
], [
1
,
1
], [
2
,
1
], [
3
,
2
]])
>>> y
=
np.array([
1
,
1
,
1
,
2
,
2
,
2
])
>>> clf
=
QuadraticDiscriminantAnalysis()
>>> clf.fit(X, y)
...
QuadraticDiscriminantAnalysis(priors
=
None
, reg_param
=
0.0
,
store_covariances
=
False
, tol
=
0.0001
)
>>>
print
(clf.predict([[
-
0.8
,
-
1
]]))
[
1
]
Methods
decision_function
(X)Apply decision function to an array of samples. fit
(X, y[, store_covariances, tol])Fit the model according to the given training data and parameters. get_params
([deep])Get parameters for this estimator. predict
(X)Perform classification on an array of test vectors X. predict_log_proba
(X)Return posterior probabilities of classification. predict_proba
(X)Return posterior probabilities of classification. score
(X, y[, sample_weight])Returns the mean accuracy on the given test data and labels. set_params
(\*\*params)Set the parameters of this estimator. -
__init__(priors=None, reg_param=0.0, store_covariances=False, tol=0.0001)
[source]
-
decision_function(X)
[source] -
Apply decision function to an array of samples.
Parameters: X : array-like, shape = [n_samples, n_features]
Array of samples (test vectors).
Returns: C : array, shape = [n_samples, n_classes] or [n_samples,]
Decision function values related to each class, per sample. In the two-class case, the shape is [n_samples,], giving the log likelihood ratio of the positive class.
-
fit(X, y, store_covariances=None, tol=None)
[source] -
Fit the model according to the given training data and parameters.
Changed in version 0.17: Deprecated store_covariance have been moved to main constructor.
Changed in version 0.17: Deprecated tol have been moved to main constructor.
Parameters: X : array-like, shape = [n_samples, n_features]
Training vector, where n_samples in the number of samples and n_features is the number of features.
y : array, shape = [n_samples]
Target values (integers)
-
get_params(deep=True)
[source] -
Get parameters for this estimator.
Parameters: deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any
Parameter names mapped to their values.
-
predict(X)
[source] -
Perform classification on an array of test vectors X.
The predicted class C for each sample in X is returned.
Parameters: X : array-like, shape = [n_samples, n_features] Returns: C : array, shape = [n_samples]
-
predict_log_proba(X)
[source] -
Return posterior probabilities of classification.
Parameters: X : array-like, shape = [n_samples, n_features]
Array of samples/test vectors.
Returns: C : array, shape = [n_samples, n_classes]
Posterior log-probabilities of classification per class.
-
predict_proba(X)
[source] -
Return posterior probabilities of classification.
Parameters: X : array-like, shape = [n_samples, n_features]
Array of samples/test vectors.
Returns: C : array, shape = [n_samples, n_classes]
Posterior probabilities of classification per class.
-
score(X, y, sample_weight=None)
[source] -
Returns the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
Parameters: X : array-like, shape = (n_samples, n_features)
Test samples.
y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True labels for X.
sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns: score : float
Mean accuracy of self.predict(X) wrt. y.
-
set_params(**params)
[source] -
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it?s possible to update each component of a nested object.Returns: self :
-
discriminant_analysis.QuadraticDiscriminantAnalysis()
Examples using

2025-01-10 15:47:30
Please login to continue.