sklearn.manifold.spectral_embedding()
  • References/Python/scikit-learn/API Reference/manifold

sklearn.manifold.spectral_embedding(adjacency, n_components=8, eigen_solver=None, random_state=None, eigen_tol=0.0, norm_laplacian=True

2025-01-10 15:47:30
cross_validation.LeavePLabelOut()
  • References/Python/scikit-learn/API Reference/cross_validation

Warning DEPRECATED

2025-01-10 15:47:30
sklearn.datasets.make_friedman2()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_friedman2(n_samples=100, noise=0.0, random_state=None)

2025-01-10 15:47:30
sklearn.metrics.f1_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.f1_score(y_true, y_pred, labels=None, pos_label=1, average='binary', sample_weight=None)

2025-01-10 15:47:30
preprocessing.MultiLabelBinarizer()
  • References/Python/scikit-learn/API Reference/preprocessing

class sklearn.preprocessing.MultiLabelBinarizer(classes=None, sparse_output=False)

2025-01-10 15:47:30
sklearn.ensemble.partial_dependence.partial_dependence()
  • References/Python/scikit-learn/API Reference/ensemble

sklearn.ensemble.partial_dependence.partial_dependence(gbrt, target_variables, grid=None, X=None, percentiles=(0

2025-01-10 15:47:30
ensemble.ExtraTreesRegressor()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.ExtraTreesRegressor(n_estimators=10, criterion='mse', max_depth=None, min_samples_split=2, min_samples_leaf=1

2025-01-10 15:47:30
random_projection.SparseRandomProjection()
  • References/Python/scikit-learn/API Reference/random_projection

class sklearn.random_projection.SparseRandomProjection(n_components='auto', density='auto', eps=0.1, dense_output=False

2025-01-10 15:47:30
gaussian_process.kernels.Matern()
  • References/Python/scikit-learn/API Reference/gaussian_process

class sklearn.gaussian_process.kernels.Matern(length_scale=1.0, length_scale_bounds=(1e-05, 100000.0), nu=1.5)

2025-01-10 15:47:30
ensemble.GradientBoostingClassifier()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.GradientBoostingClassifier(loss='deviance', learning_rate=0.1, n_estimators=100, subsample=1.0,

2025-01-10 15:47:30