linear_model.Ridge()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001, solver='auto',

2025-01-10 15:47:30
linear_model.TheilSenRegressor()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.TheilSenRegressor(fit_intercept=True, copy_X=True, max_subpopulation=10000.0, n_subsamples=None,

2025-01-10 15:47:30
kernel_ridge.KernelRidge()
  • References/Python/scikit-learn/API Reference/kernel_ridge

class sklearn.kernel_ridge.KernelRidge(alpha=1, kernel='linear', gamma=None, degree=3, coef0=1, kernel_params=None)

2025-01-10 15:47:30
ensemble.ExtraTreesRegressor()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.ExtraTreesRegressor(n_estimators=10, criterion='mse', max_depth=None, min_samples_split=2, min_samples_leaf=1

2025-01-10 15:47:30
sklearn.metrics.pairwise.paired_euclidean_distances()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.paired_euclidean_distances(X, Y)

2025-01-10 15:47:30
random_projection.SparseRandomProjection()
  • References/Python/scikit-learn/API Reference/random_projection

class sklearn.random_projection.SparseRandomProjection(n_components='auto', density='auto', eps=0.1, dense_output=False

2025-01-10 15:47:30
ensemble.GradientBoostingClassifier()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.GradientBoostingClassifier(loss='deviance', learning_rate=0.1, n_estimators=100, subsample=1.0,

2025-01-10 15:47:30
neighbors.KNeighborsClassifier()
  • References/Python/scikit-learn/API Reference/neighbors

class sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski'

2025-01-10 15:47:30
linear_model.HuberRegressor()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.HuberRegressor(epsilon=1.35, max_iter=100, alpha=0.0001, warm_start=False, fit_intercept=True, tol=1e-05)

2025-01-10 15:47:30
neighbors.BallTree
  • References/Python/scikit-learn/API Reference/neighbors

class sklearn.neighbors.BallTree BallTree for fast generalized N-point problems BallTree(X, leaf_size=40, metric=

2025-01-10 15:47:30