decomposition.PCA()

class sklearn.decomposition.PCA(n_components=None, copy=True, whiten=False, svd_solver='auto', tol=0.0, iterated_power='auto', random_state=None)

2017-01-15 04:21:22
decomposition.SparseCoder()

class sklearn.decomposition.SparseCoder(dictionary, transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None

2017-01-15 04:21:25
decomposition.MiniBatchSparsePCA()

class sklearn.decomposition.MiniBatchSparsePCA(n_components=None, alpha=1, ridge_alpha=0.01, n_iter=100, callback=None, batch_size=3

2017-01-15 04:21:20
sklearn.decomposition.dict_learning_online()

sklearn.decomposition.dict_learning_online(X, n_components=2, alpha=1, n_iter=100, return_code=True, dict_init=None,

2017-01-15 04:26:02
decomposition.RandomizedPCA()

Warning DEPRECATED

2017-01-15 04:21:24
sklearn.decomposition.dict_learning()

sklearn.decomposition.dict_learning(X, n_components, alpha, max_iter=100, tol=1e-08, method='lars', n_jobs=1, dict_init=None

2017-01-15 04:26:01
decomposition.FastICA()

class sklearn.decomposition.FastICA(n_components=None, algorithm='parallel', whiten=True, fun='logcosh', fun_args=None, max_iter=200

2017-01-15 04:21:15
decomposition.FactorAnalysis()

class sklearn.decomposition.FactorAnalysis(n_components=None, tol=0.01, copy=True, max_iter=1000, noise_variance_init=None, s

2017-01-15 04:21:13
decomposition.KernelPCA()

class sklearn.decomposition.KernelPCA(n_components=None, kernel='linear', gamma=None, degree=3, coef0=1, kernel_params=None, alpha=1

2017-01-15 04:21:17
decomposition.ProjectedGradientNMF()

class sklearn.decomposition.ProjectedGradientNMF(*args, **kwargs)

2017-01-15 04:21:23