decomposition.ProjectedGradientNMF()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.ProjectedGradientNMF(*args, **kwargs)

2025-01-10 15:47:30
sklearn.decomposition.sparse_encode()
  • References/Python/scikit-learn/API Reference/decomposition

sklearn.decomposition.sparse_encode(X, dictionary, gram=None, cov=None, algorithm='lasso_lars', n_nonzero_coefs=None, alpha=None

2025-01-10 15:47:30
decomposition.LatentDirichletAllocation()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.LatentDirichletAllocation(n_topics=10, doc_topic_prior=None, topic_word_prior=None, learning_method=None

2025-01-10 15:47:30
decomposition.MiniBatchDictionaryLearning()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.MiniBatchDictionaryLearning(n_components=None, alpha=1, n_iter=1000, fit_algorithm='lars'

2025-01-10 15:47:30
decomposition.TruncatedSVD()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.TruncatedSVD(n_components=2, algorithm='randomized', n_iter=5, random_state=None, tol=0.0)

2025-01-10 15:47:30
decomposition.IncrementalPCA()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.IncrementalPCA(n_components=None, whiten=False, copy=True, batch_size=None)

2025-01-10 15:47:30
decomposition.DictionaryLearning()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.DictionaryLearning(n_components=None, alpha=1, max_iter=1000, tol=1e-08, fit_algorithm='lars'

2025-01-10 15:47:30
decomposition.NMF()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.NMF(n_components=None, init=None, solver='cd', tol=0.0001, max_iter=200, random_state=None, alpha=0.0, l1_ratio=0

2025-01-10 15:47:30