sklearn.model_selection.cross_val_score()
  • References/Python/scikit-learn/API Reference/model_selection

sklearn.model_selection.cross_val_score(estimator, X, y=None, groups=None, scoring=None, cv=None, n_jobs=1, verbose=0, fit_params=None

2025-01-10 15:47:30
neighbors.NearestNeighbors()
  • References/Python/scikit-learn/API Reference/neighbors

class sklearn.neighbors.NearestNeighbors(n_neighbors=5, radius=1.0, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None

2025-01-10 15:47:30
model_selection.LeavePGroupsOut()
  • References/Python/scikit-learn/API Reference/model_selection

class sklearn.model_selection.LeavePGroupsOut(n_groups)

2025-01-10 15:47:30
feature_selection.SelectFwe()
  • References/Python/scikit-learn/API Reference/feature_selection

class sklearn.feature_selection.SelectFwe(score_func=, alpha=0.05)

2025-01-10 15:47:30
sklearn.datasets.fetch_20newsgroups()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.fetch_20newsgroups(data_home=None, subset='train', categories=None, shuffle=True, random_state=42, remove=()

2025-01-10 15:47:30
model_selection.ShuffleSplit()
  • References/Python/scikit-learn/API Reference/model_selection

class sklearn.model_selection.ShuffleSplit(n_splits=10, test_size=0.1, train_size=None, random_state=None)

2025-01-10 15:47:30
preprocessing.OneHotEncoder()
  • References/Python/scikit-learn/API Reference/preprocessing

class sklearn.preprocessing.OneHotEncoder(n_values='auto', categorical_features='all', dtype=, sparse=True, handle_unknown='error')

2025-01-10 15:47:30
sklearn.isotonic.check_increasing()
  • References/Python/scikit-learn/API Reference/isotonic

sklearn.isotonic.check_increasing(x, y)

2025-01-10 15:47:30
semi_supervised.LabelSpreading()
  • References/Python/scikit-learn/API Reference/semi_supervised

class sklearn.semi_supervised.LabelSpreading(kernel='rbf', gamma=20, n_neighbors=7, alpha=0.2, max_iter=30, tol=0.001, n_jobs=1)

2025-01-10 15:47:30