decomposition.TruncatedSVD()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.TruncatedSVD(n_components=2, algorithm='randomized', n_iter=5, random_state=None, tol=0.0)

2025-01-10 15:47:30
sklearn.datasets.load_iris()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.load_iris(return_X_y=False)

2025-01-10 15:47:30
sklearn.datasets.make_moons()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_moons(n_samples=100, shuffle=True, noise=None, random_state=None)

2025-01-10 15:47:30
sklearn.metrics.confusion_matrix()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.confusion_matrix(y_true, y_pred, labels=None, sample_weight=None)

2025-01-10 15:47:30
lda.LDA()
  • References/Python/scikit-learn/API Reference/lda

Warning DEPRECATED class sklearn

2025-01-10 15:47:30
neighbors.KernelDensity()
  • References/Python/scikit-learn/API Reference/neighbors

class sklearn.neighbors.KernelDensity(bandwidth=1.0, algorithm='auto', kernel='gaussian', metric='euclidean', atol=0, rtol=0, breadth_first=True

2025-01-10 15:47:30
sklearn.datasets.make_sparse_uncorrelated()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_sparse_uncorrelated(n_samples=100, n_features=10, random_state=None)

2025-01-10 15:47:30
cluster.KMeans()
  • References/Python/scikit-learn/API Reference/cluster

class sklearn.cluster.KMeans(n_clusters=8, init='k-means++', n_init=10, max_iter=300, tol=0.0001, precompute_distances='auto', verbose=0, random_state=None

2025-01-10 15:47:30
covariance.OAS()
  • References/Python/scikit-learn/API Reference/covariance

class sklearn.covariance.OAS(store_precision=True, assume_centered=False)

2025-01-10 15:47:30
linear_model.MultiTaskLasso()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.MultiTaskLasso(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=0.0001

2025-01-10 15:47:30