class sklearn.neighbors.KDTree KDTree for fast generalized N-point problems KDTree(X, leaf_size=40, metric=?minkowski
class sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski'
class sklearn.neighbors.BallTree BallTree for fast generalized N-point problems BallTree(X, leaf_size=40, metric=
class sklearn.neighbors.NearestCentroid(metric='euclidean', shrink_threshold=None)
sklearn.neighbors.kneighbors_graph(X, n_neighbors, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=False
class sklearn.neighbors.LSHForest(n_estimators=10, radius=1.0, n_candidates=50, n_neighbors=5, min_hash_match=4, radius_cutoff_ratio=0
sklearn.neighbors.radius_neighbors_graph(X, radius, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=False
class sklearn.neighbors.DistanceMetric DistanceMetric class This class provides a uniform interface to
class sklearn.neighbors.KNeighborsRegressor(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski'
class sklearn.neighbors.NearestNeighbors(n_neighbors=5, radius=1.0, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None
Page 1 of 2