linear_model.Ridge()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001, solver='auto',

2025-01-10 15:47:30
sklearn.linear_model.lasso_path()
  • References/Python/scikit-learn/API Reference/linear_model

sklearn.linear_model.lasso_path(X, y, eps=0.001, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None

2025-01-10 15:47:30
linear_model.ElasticNetCV()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.ElasticNetCV(l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False,

2025-01-10 15:47:30
linear_model.HuberRegressor()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.HuberRegressor(epsilon=1.35, max_iter=100, alpha=0.0001, warm_start=False, fit_intercept=True, tol=1e-05)

2025-01-10 15:47:30
linear_model.RidgeClassifier()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.RidgeClassifier(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001

2025-01-10 15:47:30
linear_model.MultiTaskElasticNetCV()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.MultiTaskElasticNetCV(l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True

2025-01-10 15:47:30
linear_model.TheilSenRegressor()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.TheilSenRegressor(fit_intercept=True, copy_X=True, max_subpopulation=10000.0, n_subsamples=None,

2025-01-10 15:47:30
linear_model.ElasticNet()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.ElasticNet(alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, precompute=False, max_iter=1000

2025-01-10 15:47:30
linear_model.SGDRegressor()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.SGDRegressor(loss='squared_loss', penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5

2025-01-10 15:47:30
linear_model.OrthogonalMatchingPursuit()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.OrthogonalMatchingPursuit(n_nonzero_coefs=None, tol=None, fit_intercept=True, normalize=True

2025-01-10 15:47:30