linear_model.SGDRegressor()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.SGDRegressor(loss='squared_loss', penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5

2025-01-10 15:47:30
linear_model.PassiveAggressiveRegressor()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.PassiveAggressiveRegressor(C=1.0, fit_intercept=True, n_iter=5, shuffle=True, verbose=0

2025-01-10 15:47:30
linear_model.BayesianRidge()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.BayesianRidge(n_iter=300, tol=0.001, alpha_1=1e-06, alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-06, compute_score=False

2025-01-10 15:47:30
linear_model.RandomizedLasso()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.RandomizedLasso(alpha='aic', scaling=0.5, sample_fraction=0.75, n_resampling=200, selection_threshold=0

2025-01-10 15:47:30
linear_model.LassoLarsCV()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.LassoLarsCV(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv=None

2025-01-10 15:47:30
linear_model.MultiTaskElasticNet()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.MultiTaskElasticNet(alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, copy_X=True,

2025-01-10 15:47:30
linear_model.LogisticRegressionCV()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.LogisticRegressionCV(Cs=10, fit_intercept=True, cv=None, dual=False, penalty='l2', scoring=None

2025-01-10 15:47:30
linear_model.LassoLarsIC()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.LassoLarsIC(criterion='aic', fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500

2025-01-10 15:47:30
linear_model.RidgeClassifierCV()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.RidgeClassifierCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None

2025-01-10 15:47:30
sklearn.linear_model.lars_path()
  • References/Python/scikit-learn/API Reference/linear_model

sklearn.linear_model.lars_path(X, y, Xy=None, Gram=None, max_iter=500, alpha_min=0, method='lar', copy_X=True, eps=2.2204460492503131e-16

2025-01-10 15:47:30