class sklearn.linear_model.RandomizedLasso(alpha='aic', scaling=0.5, sample_fraction=0.75, n_resampling=200, selection_threshold=0
class sklearn.linear_model.MultiTaskLassoCV(eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, max_iter=1000
class sklearn.linear_model.LassoCV(eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000
class sklearn.linear_model.LassoLarsIC(criterion='aic', fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500
sklearn.linear_model.lasso_stability_path(X, y, scaling=0.5, random_state=None, n_resampling=200, n_grid=100, sample_fraction=0
class sklearn.linear_model.ARDRegression(n_iter=300, tol=0.001, alpha_1=1e-06, alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-06, compute_score=False
class sklearn.linear_model.LassoLars(alpha=1.0, fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500,
sklearn.linear_model.orthogonal_mp(X, y, n_nonzero_coefs=None, tol=None, precompute=False, copy_X=True, return_path=False, r
class sklearn.linear_model.RidgeCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, gcv_mode=None
class sklearn.linear_model.LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=1)
Page 3 of 4