linear_model.ARDRegression()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.ARDRegression(n_iter=300, tol=0.001, alpha_1=1e-06, alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-06, compute_score=False

2025-01-10 15:47:30
linear_model.LogisticRegression()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1

2025-01-10 15:47:30
sklearn.linear_model.orthogonal_mp()
  • References/Python/scikit-learn/API Reference/linear_model

sklearn.linear_model.orthogonal_mp(X, y, n_nonzero_coefs=None, tol=None, precompute=False, copy_X=True, return_path=False, r

2025-01-10 15:47:30
sklearn.linear_model.logistic_regression_path()
  • References/Python/scikit-learn/API Reference/linear_model

sklearn.linear_model.logistic_regression_path(X, y, pos_class=None, Cs=10, fit_intercept=True, max_iter=100, tol=0

2025-01-10 15:47:30
linear_model.RandomizedLogisticRegression()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.RandomizedLogisticRegression(C=1, scaling=0.5, sample_fraction=0.75, n_resampling=200

2025-01-10 15:47:30
linear_model.SGDClassifier()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.SGDClassifier(loss='hinge', penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5,

2025-01-10 15:47:30
linear_model.MultiTaskLasso()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.MultiTaskLasso(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=0.0001

2025-01-10 15:47:30
linear_model.PassiveAggressiveClassifier()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.PassiveAggressiveClassifier(C=1.0, fit_intercept=True, n_iter=5, shuffle=True, verbose=0

2025-01-10 15:47:30
linear_model.Lasso()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.Lasso(alpha=1.0, fit_intercept=True, normalize=False, precompute=False, copy_X=True, max_iter=1000, tol=0.0001

2025-01-10 15:47:30
sklearn.linear_model.orthogonal_mp_gram()
  • References/Python/scikit-learn/API Reference/linear_model

sklearn.linear_model.orthogonal_mp_gram(Gram, Xy, n_nonzero_coefs=None, tol=None, norms_squared=None, copy_Gram=True, copy_Xy=True

2025-01-10 15:47:30