sklearn.cluster.spectral_clustering(affinity, n_clusters=8, n_components=None, eigen_solver=None, random_state=None, n_init=10
sklearn.datasets.load_svmlight_files(files, n_features=None, dtype=, multilabel=False, zero_based='auto', query_id=False)
class sklearn.linear_model.Lasso(alpha=1.0, fit_intercept=True, normalize=False, precompute=False, copy_X=True, max_iter=1000, tol=0.0001
class sklearn.cluster.bicluster.SpectralBiclustering(n_clusters=3, method='bistochastic', n_components=6, n_best=3,
sklearn.svm.libsvm.predict_proba() Predict probabilities svm_model stores all parameters needed to
sklearn.datasets.load_boston(return_X_y=False)
class sklearn.linear_model.RandomizedLogisticRegression(C=1, scaling=0.5, sample_fraction=0.75, n_resampling=200
class sklearn.exceptions.FitFailedWarning
class sklearn.linear_model.SGDClassifier(loss='hinge', penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5,
class sklearn.neighbors.NearestNeighbors(n_neighbors=5, radius=1.0, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None
Page 42 of 43