ensemble.GradientBoostingClassifier()

class sklearn.ensemble.GradientBoostingClassifier(loss='deviance', learning_rate=0.1, n_estimators=100, subsample=1.0,

2017-01-15 04:21:44
sklearn.ensemble.partial_dependence.plot_partial_dependence()

sklearn.ensemble.partial_dependence.plot_partial_dependence(gbrt, X, features, feature_names=None, label=None

2017-01-15 04:26:03
ensemble.ExtraTreesRegressor()

class sklearn.ensemble.ExtraTreesRegressor(n_estimators=10, criterion='mse', max_depth=None, min_samples_split=2, min_samples_leaf=1

2017-01-15 04:21:43
ensemble.GradientBoostingRegressor()

class sklearn.ensemble.GradientBoostingRegressor(loss='ls', learning_rate=0.1, n_estimators=100, subsample=1.0, criterion='friedman_mse'

2017-01-15 04:21:46
ensemble.ExtraTreesClassifier()

class sklearn.ensemble.ExtraTreesClassifier(n_estimators=10, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1

2017-01-15 04:21:41
sklearn.ensemble.partial_dependence.partial_dependence()

sklearn.ensemble.partial_dependence.partial_dependence(gbrt, target_variables, grid=None, X=None, percentiles=(0

2017-01-15 04:26:03
ensemble.IsolationForest()

class sklearn.ensemble.IsolationForest(n_estimators=100, max_samples='auto', contamination=0.1, max_features=1.0, bootstrap=False

2017-01-15 04:21:47
ensemble.AdaBoostClassifier()

class sklearn.ensemble.AdaBoostClassifier(base_estimator=None, n_estimators=50, learning_rate=1.0, algorithm='SAMME.R', random_state=None)

2017-01-15 04:21:37
ensemble.AdaBoostRegressor()

class sklearn.ensemble.AdaBoostRegressor(base_estimator=None, n_estimators=50, learning_rate=1.0, loss='linear', random_state=None)

2017-01-15 04:21:38
ensemble.VotingClassifier()

class sklearn.ensemble.VotingClassifier(estimators, voting='hard', weights=None, n_jobs=1)

2017-01-15 04:21:51