sklearn.ensemble.partial_dependence.partial_dependence()
  • References/Python/scikit-learn/API Reference/ensemble

sklearn.ensemble.partial_dependence.partial_dependence(gbrt, target_variables, grid=None, X=None, percentiles=(0

2025-01-10 15:47:30
ensemble.ExtraTreesRegressor()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.ExtraTreesRegressor(n_estimators=10, criterion='mse', max_depth=None, min_samples_split=2, min_samples_leaf=1

2025-01-10 15:47:30
ensemble.GradientBoostingClassifier()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.GradientBoostingClassifier(loss='deviance', learning_rate=0.1, n_estimators=100, subsample=1.0,

2025-01-10 15:47:30
ensemble.GradientBoostingRegressor()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.GradientBoostingRegressor(loss='ls', learning_rate=0.1, n_estimators=100, subsample=1.0, criterion='friedman_mse'

2025-01-10 15:47:30
ensemble.ExtraTreesClassifier()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.ExtraTreesClassifier(n_estimators=10, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1

2025-01-10 15:47:30
sklearn.ensemble.partial_dependence.plot_partial_dependence()
  • References/Python/scikit-learn/API Reference/ensemble

sklearn.ensemble.partial_dependence.plot_partial_dependence(gbrt, X, features, feature_names=None, label=None

2025-01-10 15:47:30
ensemble.AdaBoostClassifier()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.AdaBoostClassifier(base_estimator=None, n_estimators=50, learning_rate=1.0, algorithm='SAMME.R', random_state=None)

2025-01-10 15:47:30
ensemble.IsolationForest()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.IsolationForest(n_estimators=100, max_samples='auto', contamination=0.1, max_features=1.0, bootstrap=False

2025-01-10 15:47:30
ensemble.VotingClassifier()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.VotingClassifier(estimators, voting='hard', weights=None, n_jobs=1)

2025-01-10 15:47:30
ensemble.AdaBoostRegressor()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.AdaBoostRegressor(base_estimator=None, n_estimators=50, learning_rate=1.0, loss='linear', random_state=None)

2025-01-10 15:47:30