In this example we see how to robustly fit a linear model to faulty data using the RANSAC algorithm.
class sklearn.linear_model.ElasticNetCV(l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False,
class sklearn.preprocessing.StandardScaler(copy=True, with_mean=True, with_std=True)
This example uses a large dataset of faces to learn a set of 20 x 20 images patches that constitute faces. From the programming standpoint
RandomTreesEmbedding provides a way to map data to a very high-dimensional, sparse representation, which might be beneficial for classification
sklearn.metrics.matthews_corrcoef(y_true, y_pred, sample_weight=None)
Clustering of unlabeled data can be performed with the module
class sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski'
class sklearn.linear_model.ElasticNet(alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, precompute=False, max_iter=1000
sklearn.manifold.spectral_embedding(adjacency, n_components=8, eigen_solver=None, random_state=None, eigen_tol=0.0, norm_laplacian=True
Page 5 of 70