Robust linear model estimation using RANSAC
  • References/Python/scikit-learn/Examples/Generalized Linear Models

In this example we see how to robustly fit a linear model to faulty data using the RANSAC algorithm.

2025-01-10 15:47:30
linear_model.ElasticNetCV()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.ElasticNetCV(l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False,

2025-01-10 15:47:30
preprocessing.StandardScaler()
  • References/Python/scikit-learn/API Reference/preprocessing

class sklearn.preprocessing.StandardScaler(copy=True, with_mean=True, with_std=True)

2025-01-10 15:47:30
Online learning of a dictionary of parts of faces
  • References/Python/scikit-learn/Examples/Clustering

This example uses a large dataset of faces to learn a set of 20 x 20 images patches that constitute faces. From the programming standpoint

2025-01-10 15:47:30
Hashing feature transformation using Totally Random Trees
  • References/Python/scikit-learn/Examples/Ensemble methods

RandomTreesEmbedding provides a way to map data to a very high-dimensional, sparse representation, which might be beneficial for classification

2025-01-10 15:47:30
sklearn.metrics.matthews_corrcoef()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.matthews_corrcoef(y_true, y_pred, sample_weight=None)

2025-01-10 15:47:30
2.3.
  • References/Python/scikit-learn/Guide

Clustering of unlabeled data can be performed with the module

2025-01-10 15:47:30
neighbors.KNeighborsClassifier()
  • References/Python/scikit-learn/API Reference/neighbors

class sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski'

2025-01-10 15:47:30
linear_model.ElasticNet()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.ElasticNet(alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, precompute=False, max_iter=1000

2025-01-10 15:47:30
sklearn.manifold.spectral_embedding()
  • References/Python/scikit-learn/API Reference/manifold

sklearn.manifold.spectral_embedding(adjacency, n_components=8, eigen_solver=None, random_state=None, eigen_tol=0.0, norm_laplacian=True

2025-01-10 15:47:30