Feature agglomeration vs. univariate selection
  • References/Python/scikit-learn/Examples/Clustering

This example compares 2 dimensionality reduction strategies: univariate feature selection with Anova feature

2025-01-10 15:47:30
gaussian_process.kernels.PairwiseKernel()
  • References/Python/scikit-learn/API Reference/gaussian_process

class sklearn.gaussian_process.kernels.PairwiseKernel(gamma=1.0, gamma_bounds=(1e-05, 100000.0), metric='linear',

2025-01-10 15:47:30
Underfitting vs.
  • References/Python/scikit-learn/Examples/Model Selection

This example demonstrates the problems of underfitting and overfitting and how we can use linear regression with polynomial features to approximate nonlinear functions

2025-01-10 15:47:30
FeatureHasher and DictVectorizer Comparison
  • References/Python/scikit-learn/Examples/Working with text documents

Compares FeatureHasher and DictVectorizer by using both to vectorize text documents. The example demonstrates syntax and speed only; it doesn

2025-01-10 15:47:30
Gaussian Mixture Model Sine Curve
  • References/Python/scikit-learn/Examples/Gaussian Mixture Models

This example demonstrates the behavior of Gaussian mixture models fit on data that was not sampled from a mixture of Gaussian random variables. The dataset

2025-01-10 15:47:30
neighbors.KNeighborsClassifier()
  • References/Python/scikit-learn/API Reference/neighbors

class sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski'

2025-01-10 15:47:30
Train error vs Test error
  • References/Python/scikit-learn/Examples/Model Selection

Illustration of how the performance of an estimator on unseen data (test data) is not the same as the performance on training data. As the regularization increases

2025-01-10 15:47:30
sklearn.cluster.ward_tree()
  • References/Python/scikit-learn/API Reference/cluster

sklearn.cluster.ward_tree(X, connectivity=None, n_clusters=None, return_distance=False)

2025-01-10 15:47:30
sklearn.datasets.make_friedman2()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_friedman2(n_samples=100, noise=0.0, random_state=None)

2025-01-10 15:47:30
neighbors.LSHForest()
  • References/Python/scikit-learn/API Reference/neighbors

class sklearn.neighbors.LSHForest(n_estimators=10, radius=1.0, n_candidates=50, n_neighbors=5, min_hash_match=4, radius_cutoff_ratio=0

2025-01-10 15:47:30