sklearn.covariance.ledoit_wolf()
  • References/Python/scikit-learn/API Reference/covariance

sklearn.covariance.ledoit_wolf(X, assume_centered=False, block_size=1000)

2025-01-10 15:47:30
feature_selection.SelectKBest()
  • References/Python/scikit-learn/API Reference/feature_selection

class sklearn.feature_selection.SelectKBest(score_func=, k=10)

2025-01-10 15:47:30
Underfitting vs.
  • References/Python/scikit-learn/Examples/Model Selection

This example demonstrates the problems of underfitting and overfitting and how we can use linear regression with polynomial features to approximate nonlinear functions

2025-01-10 15:47:30
sklearn.datasets.fetch_lfw_people()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.fetch_lfw_people(data_home=None, funneled=True, resize=0.5, min_faces_per_person=0, color=False, slice_=(slice(70

2025-01-10 15:47:30
Concentration Prior Type Analysis of Variation Bayesian Gaussian Mixture
  • References/Python/scikit-learn/Examples/Gaussian Mixture Models

This example plots the ellipsoids obtained from a toy dataset (mixture of three Gaussians) fitted by the Baye

2025-01-10 15:47:30
sklearn.metrics.silhouette_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.silhouette_score(X, labels, metric='euclidean', sample_size=None, random_state=None, **kwds)

2025-01-10 15:47:30
Label Propagation digits active learning
  • References/Python/scikit-learn/Examples/Semi Supervised Classification

Demonstrates an active learning technique to learn handwritten digits using label propagation. We start by training a label propagation model

2025-01-10 15:47:30
sklearn.metrics.homogeneity_completeness_v_measure()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.homogeneity_completeness_v_measure(labels_true, labels_pred)

2025-01-10 15:47:30
linear_model.OrthogonalMatchingPursuitCV()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.OrthogonalMatchingPursuitCV(copy=True, fit_intercept=True, normalize=True, max_iter=None

2025-01-10 15:47:30
Feature agglomeration vs. univariate selection
  • References/Python/scikit-learn/Examples/Clustering

This example compares 2 dimensionality reduction strategies: univariate feature selection with Anova feature

2025-01-10 15:47:30