sklearn.metrics.calinski_harabaz_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.calinski_harabaz_score(X, labels)

2025-01-10 15:47:30
linear_model.HuberRegressor()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.HuberRegressor(epsilon=1.35, max_iter=100, alpha=0.0001, warm_start=False, fit_intercept=True, tol=1e-05)

2025-01-10 15:47:30
FeatureHasher and DictVectorizer Comparison
  • References/Python/scikit-learn/Examples/Working with text documents

Compares FeatureHasher and DictVectorizer by using both to vectorize text documents. The example demonstrates syntax and speed only; it doesn

2025-01-10 15:47:30
Supervised learning
  • References/Python/scikit-learn/Tutorials

The problem solved in supervised learning

2025-01-10 15:47:30
ensemble.GradientBoostingRegressor()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.GradientBoostingRegressor(loss='ls', learning_rate=0.1, n_estimators=100, subsample=1.0, criterion='friedman_mse'

2025-01-10 15:47:30
neural_network.MLPClassifier()
  • References/Python/scikit-learn/API Reference/neural_network

class sklearn.neural_network.MLPClassifier(hidden_layer_sizes=(100, ), activation='relu', solver='adam', alpha=0.0001, batch_size='auto'

2025-01-10 15:47:30
Scalability of Approximate Nearest Neighbors
  • References/Python/scikit-learn/Examples/Nearest Neighbors

This example studies the scalability profile of approximate 10-neighbors queries using the LSHForest with n_estimators=20 and

2025-01-10 15:47:30
linear_model.TheilSenRegressor()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.TheilSenRegressor(fit_intercept=True, copy_X=True, max_subpopulation=10000.0, n_subsamples=None,

2025-01-10 15:47:30
neural_network.MLPRegressor()
  • References/Python/scikit-learn/API Reference/neural_network

class sklearn.neural_network.MLPRegressor(hidden_layer_sizes=(100, ), activation='relu', solver='adam', alpha=0.0001, batch_size='auto'

2025-01-10 15:47:30
linear_model.RidgeClassifier()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.RidgeClassifier(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001

2025-01-10 15:47:30