sklearn.metrics.calinski_harabaz_score(X, labels)
class sklearn.linear_model.HuberRegressor(epsilon=1.35, max_iter=100, alpha=0.0001, warm_start=False, fit_intercept=True, tol=1e-05)
Compares FeatureHasher and DictVectorizer by using both to vectorize text documents. The example demonstrates syntax and speed only; it doesn
The problem solved in supervised learning
class sklearn.ensemble.GradientBoostingRegressor(loss='ls', learning_rate=0.1, n_estimators=100, subsample=1.0, criterion='friedman_mse'
class sklearn.neural_network.MLPClassifier(hidden_layer_sizes=(100, ), activation='relu', solver='adam', alpha=0.0001, batch_size='auto'
This example studies the scalability profile of approximate 10-neighbors queries using the LSHForest with n_estimators=20 and
class sklearn.linear_model.TheilSenRegressor(fit_intercept=True, copy_X=True, max_subpopulation=10000.0, n_subsamples=None,
class sklearn.neural_network.MLPRegressor(hidden_layer_sizes=(100, ), activation='relu', solver='adam', alpha=0.0001, batch_size='auto'
class sklearn.linear_model.RidgeClassifier(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001
Page 10 of 70