sklearn.neighbors.kneighbors_graph()
  • References/Python/scikit-learn/API Reference/neighbors

sklearn.neighbors.kneighbors_graph(X, n_neighbors, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=False

2025-01-10 15:47:30
Recognizing hand-written digits
  • References/Python/scikit-learn/Examples/Classification

An example showing how the scikit-learn can be used to recognize images of hand-written digits. This example is commented in the

2025-01-10 15:47:30
preprocessing.StandardScaler()
  • References/Python/scikit-learn/API Reference/preprocessing

class sklearn.preprocessing.StandardScaler(copy=True, with_mean=True, with_std=True)

2025-01-10 15:47:30
3.3.
  • References/Python/scikit-learn/Guide

There are 3 different approaches to evaluate the quality of predictions of a model: Estimator score

2025-01-10 15:47:30
model_selection.GroupShuffleSplit()
  • References/Python/scikit-learn/API Reference/model_selection

class sklearn.model_selection.GroupShuffleSplit(n_splits=5, test_size=0.2, train_size=None, random_state=None)

2025-01-10 15:47:30
Incremental PCA
  • References/Python/scikit-learn/Examples/Decomposition

Incremental principal component analysis (IPCA) is typically used as a replacement for principal component analysis (PCA) when the dataset to be decomposed is too large to fit

2025-01-10 15:47:30
Lasso path using LARS
  • References/Python/scikit-learn/Examples/Generalized Linear Models

Computes Lasso Path along the regularization parameter using the LARS algorithm on the diabetes dataset. Each color represents a different feature of the coefficient vector

2025-01-10 15:47:30
4.1.
  • References/Python/scikit-learn/Guide

4.1.1. Pipeline: chaining estimators

2025-01-10 15:47:30
feature_selection.SelectKBest()
  • References/Python/scikit-learn/API Reference/feature_selection

class sklearn.feature_selection.SelectKBest(score_func=, k=10)

2025-01-10 15:47:30
sklearn.pipeline.make_pipeline()
  • References/Python/scikit-learn/API Reference/pipeline

sklearn.pipeline.make_pipeline(*steps)

2025-01-10 15:47:30