sklearn.metrics.hinge_loss()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.hinge_loss(y_true, pred_decision, labels=None, sample_weight=None)

2025-01-10 15:47:30
Faces dataset decompositions
  • References/Python/scikit-learn/Examples/Decomposition

This example applies to The Olivetti faces dataset different unsupervised matrix decomposition (dimension reduction) methods from

2025-01-10 15:47:30
Blind source separation using FastICA
  • References/Python/scikit-learn/Examples/Decomposition

An example of estimating sources from noisy data.

2025-01-10 15:47:30
ensemble.AdaBoostClassifier()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.AdaBoostClassifier(base_estimator=None, n_estimators=50, learning_rate=1.0, algorithm='SAMME.R', random_state=None)

2025-01-10 15:47:30
sklearn.model_selection.check_cv()
  • References/Python/scikit-learn/API Reference/model_selection

sklearn.model_selection.check_cv(cv=3, y=None, classifier=False)

2025-01-10 15:47:30
Plot different SVM classifiers in the iris dataset
  • References/Python/scikit-learn/Examples/Support Vector Machines

Comparison of different linear SVM classifiers on a 2D projection of the iris dataset. We only consider the first 2 features of this dataset:

2025-01-10 15:47:30
Sparse coding with a precomputed dictionary
  • References/Python/scikit-learn/Examples/Decomposition

Transform a signal as a sparse combination of Ricker wavelets. This example visually compares different sparse coding methods using the

2025-01-10 15:47:30
svm.SVR()
  • References/Python/scikit-learn/API Reference/svm

class sklearn.svm.SVR(kernel='rbf', degree=3, gamma='auto', coef0=0.0, tol=0.001, C=1.0, epsilon=0.1, shrinking=True, cache_size=200, verbose=False

2025-01-10 15:47:30
A demo of the mean-shift clustering algorithm
  • References/Python/scikit-learn/Examples/Clustering

Reference: Dorin Comaniciu and Peter Meer, ?Mean Shift: A robust approach toward feature space analysis?. IEEE Transactions on Pattern Analysis

2025-01-10 15:47:30
sklearn.feature_selection.f_classif()
  • References/Python/scikit-learn/API Reference/feature_selection

sklearn.feature_selection.f_classif(X, y)

2025-01-10 15:47:30