sklearn.covariance.graph_lasso(emp_cov, alpha, cov_init=None, mode='cd', tol=0.0001, enet_tol=0.0001, max_iter=100, verbose=False
sklearn.isotonic.isotonic_regression(y, sample_weight=None, y_min=None, y_max=None, increasing=True)
sklearn.metrics.mean_absolute_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average')
sklearn.preprocessing.add_dummy_feature(X, value=1.0)
class sklearn.ensemble.AdaBoostRegressor(base_estimator=None, n_estimators=50, learning_rate=1.0, loss='linear', random_state=None)
class sklearn.feature_extraction.image.PatchExtractor(patch_size=None, max_patches=None, random_state=None)
Reference: Dorin Comaniciu and Peter Meer, ?Mean Shift: A robust approach toward feature space analysis?. IEEE Transactions on Pattern Analysis
class sklearn.exceptions.DataDimensionalityWarning
class sklearn.ensemble.AdaBoostClassifier(base_estimator=None, n_estimators=50, learning_rate=1.0, algorithm='SAMME.R', random_state=None)
class sklearn.decomposition.KernelPCA(n_components=None, kernel='linear', gamma=None, degree=3, coef0=1, kernel_params=None, alpha=1
Page 15 of 70