6.
  • References/Python/scikit-learn/Guide

For some applications the amount of examples, features (or both) and/or the speed at which they need to be processed are challenging for traditional

2025-01-10 15:47:30
sklearn.learning_curve.learning_curve()
  • References/Python/scikit-learn/API Reference/learning_curve

Warning DEPRECATED

2025-01-10 15:47:30
K-means Clustering
  • References/Python/scikit-learn/Examples/Clustering

The plots display firstly what a K-means algorithm would yield using three clusters. It is then shown what the effect of a bad initialization is on the classification process:

2025-01-10 15:47:30
svm.SVR()
  • References/Python/scikit-learn/API Reference/svm

class sklearn.svm.SVR(kernel='rbf', degree=3, gamma='auto', coef0=0.0, tol=0.001, C=1.0, epsilon=0.1, shrinking=True, cache_size=200, verbose=False

2025-01-10 15:47:30
sklearn.svm.libsvm.predict()
  • References/Python/scikit-learn/API Reference/svm

sklearn.svm.libsvm.predict() Predict target values of X given a model (low-level method)

2025-01-10 15:47:30
sklearn.feature_selection.f_classif()
  • References/Python/scikit-learn/API Reference/feature_selection

sklearn.feature_selection.f_classif(X, y)

2025-01-10 15:47:30
A tutorial on statistical-learning for scientific data processing
  • References/Python/scikit-learn/Tutorials

Statistical learning

2025-01-10 15:47:30
multioutput.MultiOutputRegressor()
  • References/Python/scikit-learn/API Reference/multioutput

class sklearn.multioutput.MultiOutputRegressor(estimator, n_jobs=1)

2025-01-10 15:47:30
sklearn.datasets.get_data_home()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.get_data_home(data_home=None)

2025-01-10 15:47:30
SVM-Anova
  • References/Python/scikit-learn/Examples/Support Vector Machines

This example shows how to perform univariate feature selection before running a SVC (support vector classifier) to improve the classification

2025-01-10 15:47:30