Comparison of Calibration of Classifiers
  • References/Python/scikit-learn/Examples/Calibration

Well calibrated classifiers are probabilistic classifiers for which the output of the predict_proba method can be directly interpreted as a confidence

2025-01-10 15:47:30
sklearn.feature_selection.mutual_info_regression()
  • References/Python/scikit-learn/API Reference/feature_selection

sklearn.feature_selection.mutual_info_regression(X, y, discrete_features='auto', n_neighbors=3, copy=True, ran

2025-01-10 15:47:30
sklearn.covariance.shrunk_covariance()
  • References/Python/scikit-learn/API Reference/covariance

sklearn.covariance.shrunk_covariance(emp_cov, shrinkage=0.1)

2025-01-10 15:47:30
linear_model.PassiveAggressiveRegressor()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.PassiveAggressiveRegressor(C=1.0, fit_intercept=True, n_iter=5, shuffle=True, verbose=0

2025-01-10 15:47:30
preprocessing.LabelBinarizer()
  • References/Python/scikit-learn/API Reference/preprocessing

class sklearn.preprocessing.LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False)

2025-01-10 15:47:30
Sparse coding with a precomputed dictionary
  • References/Python/scikit-learn/Examples/Decomposition

Transform a signal as a sparse combination of Ricker wavelets. This example visually compares different sparse coding methods using the

2025-01-10 15:47:30
Ledoit-Wolf vs OAS estimation
  • References/Python/scikit-learn/Examples/Covariance estimation

The usual covariance maximum likelihood estimate can be regularized using shrinkage. Ledoit and Wolf proposed a close formula to compute the asymptotically optimal

2025-01-10 15:47:30
sklearn.random_projection.johnson_lindenstrauss_min_dim()
  • References/Python/scikit-learn/API Reference/random_projection

sklearn.random_projection.johnson_lindenstrauss_min_dim(n_samples, eps=0.1)

2025-01-10 15:47:30
sklearn.utils.shuffle()
  • References/Python/scikit-learn/API Reference/utils

sklearn.utils.shuffle(*arrays, **options)

2025-01-10 15:47:30
PCA example with Iris Data-set
  • References/Python/scikit-learn/Examples/Decomposition

Principal Component Analysis applied to the Iris dataset. See

2025-01-10 15:47:30