Compare cross decomposition methods
  • References/Python/scikit-learn/Examples/Cross decomposition

Simple usage of various cross decomposition algorithms: - PLSCanonical - PLSRegression, with multivariate response, a.k.a. PLS2 - PLSRegression, with univariate

2025-01-10 15:47:30
sklearn.utils.resample()
  • References/Python/scikit-learn/API Reference/utils

sklearn.utils.resample(*arrays, **options)

2025-01-10 15:47:30
Imputing missing values before building an estimator
  • References/Python/scikit-learn/Examples/General examples

This example shows that imputing the missing values can give better results than discarding the samples containing any missing value. Imputing

2025-01-10 15:47:30
decomposition.FactorAnalysis()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.FactorAnalysis(n_components=None, tol=0.01, copy=True, max_iter=1000, noise_variance_init=None, s

2025-01-10 15:47:30
sklearn.feature_extraction.image.reconstruct_from_patches_2d()
  • References/Python/scikit-learn/API Reference/feature_extraction

sklearn.feature_extraction.image.reconstruct_from_patches_2d(patches, image_size)

2025-01-10 15:47:30
ensemble.IsolationForest()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.IsolationForest(n_estimators=100, max_samples='auto', contamination=0.1, max_features=1.0, bootstrap=False

2025-01-10 15:47:30
sklearn.metrics.get_scorer()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.get_scorer(scoring)

2025-01-10 15:47:30
sklearn.metrics.pairwise.kernel_metrics()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.kernel_metrics()

2025-01-10 15:47:30
ensemble.VotingClassifier()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.VotingClassifier(estimators, voting='hard', weights=None, n_jobs=1)

2025-01-10 15:47:30
cross_validation.StratifiedShuffleSplit()
  • References/Python/scikit-learn/API Reference/cross_validation

Warning DEPRECATED

2025-01-10 15:47:30