Simple usage of various cross decomposition algorithms: - PLSCanonical - PLSRegression, with multivariate response, a.k.a. PLS2 - PLSRegression, with univariate
sklearn.utils.resample(*arrays, **options)
This example shows that imputing the missing values can give better results than discarding the samples containing any missing value. Imputing
class sklearn.decomposition.FactorAnalysis(n_components=None, tol=0.01, copy=True, max_iter=1000, noise_variance_init=None, s
sklearn.feature_extraction.image.reconstruct_from_patches_2d(patches, image_size)
class sklearn.ensemble.IsolationForest(n_estimators=100, max_samples='auto', contamination=0.1, max_features=1.0, bootstrap=False
sklearn.metrics.get_scorer(scoring)
sklearn.metrics.pairwise.kernel_metrics()
class sklearn.ensemble.VotingClassifier(estimators, voting='hard', weights=None, n_jobs=1)
Warning DEPRECATED
Page 23 of 70