sklearn.metrics.precision_recall_fscore_support()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.precision_recall_fscore_support(y_true, y_pred, beta=1.0, labels=None, pos_label=1, average=None

2025-01-10 15:47:30
sklearn.datasets.make_classification()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_classification(n_samples=100, n_features=20, n_informative=2, n_redundant=2, n_repeated=0, n_classes=2

2025-01-10 15:47:30
exceptions.ChangedBehaviorWarning
  • References/Python/scikit-learn/API Reference/exceptions

class sklearn.exceptions.ChangedBehaviorWarning

2025-01-10 15:47:30
1.16.
  • References/Python/scikit-learn/Guide

When performing classification you often want not only to predict the class label, but also obtain a probability of the respective label. This probability gives you

2025-01-10 15:47:30
pipeline.Pipeline()
  • References/Python/scikit-learn/API Reference/pipeline

class sklearn.pipeline.Pipeline(steps)

2025-01-10 15:47:30
sklearn.cross_validation.cross_val_score()
  • References/Python/scikit-learn/API Reference/cross_validation

Warning DEPRECATED

2025-01-10 15:47:30
model_selection.ParameterGrid()
  • References/Python/scikit-learn/API Reference/model_selection

class sklearn.model_selection.ParameterGrid(param_grid)

2025-01-10 15:47:30
sklearn.datasets.make_swiss_roll()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_swiss_roll(n_samples=100, noise=0.0, random_state=None)

2025-01-10 15:47:30
model_selection.GroupKFold()
  • References/Python/scikit-learn/API Reference/model_selection

class sklearn.model_selection.GroupKFold(n_splits=3)

2025-01-10 15:47:30
neighbors.DistanceMetric
  • References/Python/scikit-learn/API Reference/neighbors

class sklearn.neighbors.DistanceMetric DistanceMetric class This class provides a uniform interface to

2025-01-10 15:47:30