sklearn.metrics.log_loss()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.log_loss(y_true, y_pred, eps=1e-15, normalize=True, sample_weight=None, labels=None)

2025-01-10 15:47:30
SVM-Kernels
  • References/Python/scikit-learn/Examples/Support Vector Machines

Three different types of SVM-Kernels are displayed below. The polynomial and RBF are especially useful when the data-points are not linearly separable.

2025-01-10 15:47:30
mixture.VBGMM()
  • References/Python/scikit-learn/API Reference/mixture

Warning DEPRECATED class sklearn

2025-01-10 15:47:30
gaussian_process.GaussianProcess()
  • References/Python/scikit-learn/API Reference/gaussian_process

Warning DEPRECATED

2025-01-10 15:47:30
SVM: Maximum margin separating hyperplane
  • References/Python/scikit-learn/Examples/Support Vector Machines

Plot the maximum margin separating hyperplane within a two-class separable dataset using a Support Vector Machine classifier with linear kernel.

2025-01-10 15:47:30
sklearn.pipeline.make_union()
  • References/Python/scikit-learn/API Reference/pipeline

sklearn.pipeline.make_union(*transformers)

2025-01-10 15:47:30
sklearn.datasets.make_multilabel_classification()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50

2025-01-10 15:47:30
sklearn.model_selection.check_cv()
  • References/Python/scikit-learn/API Reference/model_selection

sklearn.model_selection.check_cv(cv=3, y=None, classifier=False)

2025-01-10 15:47:30
Illustration of Gaussian process classification on the XOR dataset
  • References/Python/scikit-learn/Examples/Gaussian Process for Machine Learning

This example illustrates GPC on XOR data. Compared are a stationary, isotropic kernel (RBF) and a non-stationary kernel

2025-01-10 15:47:30
gaussian_process.kernels.ExpSineSquared()
  • References/Python/scikit-learn/API Reference/gaussian_process

class sklearn.gaussian_process.kernels.ExpSineSquared(length_scale=1.0, periodicity=1.0, length_scale_bounds=(1e-05

2025-01-10 15:47:30