Feature selection using SelectFromModel and LassoCV
  • References/Python/scikit-learn/Examples/Feature Selection

Use SelectFromModel meta-transformer along with Lasso to select the best couple of features from the Boston dataset.

2025-01-10 15:47:30
linear_model.PassiveAggressiveRegressor()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.PassiveAggressiveRegressor(C=1.0, fit_intercept=True, n_iter=5, shuffle=True, verbose=0

2025-01-10 15:47:30
Putting it all together
  • References/Python/scikit-learn/Tutorials

Pipelining We have seen that some estimators can transform data and that some estimators can predict variables. We can also create combined estimators:

2025-01-10 15:47:30
sklearn.preprocessing.robust_scale()
  • References/Python/scikit-learn/API Reference/preprocessing

sklearn.preprocessing.robust_scale(X, axis=0, with_centering=True, with_scaling=True, quantile_range=(25.0, 75.0), copy=True)

2025-01-10 15:47:30
cluster.AgglomerativeClustering()
  • References/Python/scikit-learn/API Reference/cluster

class sklearn.cluster.AgglomerativeClustering(n_clusters=2, affinity='euclidean', memory=Memory(cachedir=None), connectivity=None

2025-01-10 15:47:30
sklearn.metrics.hinge_loss()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.hinge_loss(y_true, pred_decision, labels=None, sample_weight=None)

2025-01-10 15:47:30
Visualization of MLP weights on MNIST
  • References/Python/scikit-learn/Examples/Neural Networks

Sometimes looking at the learned coefficients of a neural network can provide insight into the learning behavior. For example if weights look unstructured

2025-01-10 15:47:30
sklearn.metrics.silhouette_samples()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.silhouette_samples(X, labels, metric='euclidean', **kwds)

2025-01-10 15:47:30
decomposition.KernelPCA()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.KernelPCA(n_components=None, kernel='linear', gamma=None, degree=3, coef0=1, kernel_params=None, alpha=1

2025-01-10 15:47:30
sklearn.covariance.graph_lasso()
  • References/Python/scikit-learn/API Reference/covariance

sklearn.covariance.graph_lasso(emp_cov, alpha, cov_init=None, mode='cd', tol=0.0001, enet_tol=0.0001, max_iter=100, verbose=False

2025-01-10 15:47:30