sklearn.metrics.silhouette_samples()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.silhouette_samples(X, labels, metric='euclidean', **kwds)

2025-01-10 15:47:30
Ledoit-Wolf vs OAS estimation
  • References/Python/scikit-learn/Examples/Covariance estimation

The usual covariance maximum likelihood estimate can be regularized using shrinkage. Ledoit and Wolf proposed a close formula to compute the asymptotically optimal

2025-01-10 15:47:30
linear_model.BayesianRidge()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.BayesianRidge(n_iter=300, tol=0.001, alpha_1=1e-06, alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-06, compute_score=False

2025-01-10 15:47:30
Comparing random forests and the multi-output meta estimator
  • References/Python/scikit-learn/Examples/Ensemble methods

An example to compare multi-output regression with random forest and the

2025-01-10 15:47:30
Pixel importances with a parallel forest of trees
  • References/Python/scikit-learn/Examples/Ensemble methods

This example shows the use of forests of trees to evaluate the importance of the pixels in an image classification task (faces). The hotter

2025-01-10 15:47:30
sklearn.preprocessing.binarize()
  • References/Python/scikit-learn/API Reference/preprocessing

sklearn.preprocessing.binarize(X, threshold=0.0, copy=True)

2025-01-10 15:47:30
Faces dataset decompositions
  • References/Python/scikit-learn/Examples/Decomposition

This example applies to The Olivetti faces dataset different unsupervised matrix decomposition (dimension reduction) methods from

2025-01-10 15:47:30
IsolationForest example
  • References/Python/scikit-learn/Examples/Ensemble methods

An example using IsolationForest for anomaly detection. The IsolationForest ?isolates? observations by randomly selecting a feature and then randomly selecting

2025-01-10 15:47:30
Model Complexity Influence
  • References/Python/scikit-learn/Examples/Examples based on real world datasets

Demonstrate how model complexity influences both prediction accuracy and computational performance. The dataset is the Boston Housing dataset (resp. 20 Newsgroups)

2025-01-10 15:47:30
model_selection.StratifiedShuffleSplit()
  • References/Python/scikit-learn/API Reference/model_selection

class sklearn.model_selection.StratifiedShuffleSplit(n_splits=10, test_size=0.1, train_size=None, random_state=None)

2025-01-10 15:47:30