Simple 1D Kernel Density Estimation
  • References/Python/scikit-learn/Examples/Nearest Neighbors

This example uses the

2025-01-10 15:47:30
gaussian_process.kernels.Product()
  • References/Python/scikit-learn/API Reference/gaussian_process

class sklearn.gaussian_process.kernels.Product(k1, k2)

2025-01-10 15:47:30
gaussian_process.kernels.Exponentiation()
  • References/Python/scikit-learn/API Reference/gaussian_process

class sklearn.gaussian_process.kernels.Exponentiation(kernel, exponent)

2025-01-10 15:47:30
sklearn.metrics.pairwise.distance_metrics()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.distance_metrics()

2025-01-10 15:47:30
sklearn.datasets.make_s_curve()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_s_curve(n_samples=100, noise=0.0, random_state=None)

2025-01-10 15:47:30
Prediction Latency
  • References/Python/scikit-learn/Examples/Examples based on real world datasets

This is an example showing the prediction latency of various scikit-learn estimators. The goal is to measure the latency one can expect when doing predictions either

2025-01-10 15:47:30
Unsupervised learning
  • References/Python/scikit-learn/Tutorials

Clustering: grouping observations together The problem solved in clustering Given the

2025-01-10 15:47:30
model_selection.RandomizedSearchCV()
  • References/Python/scikit-learn/API Reference/model_selection

class sklearn.model_selection.RandomizedSearchCV(estimator, param_distributions, n_iter=10, scoring=None, fit_params=None

2025-01-10 15:47:30
sklearn.metrics.mutual_info_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.mutual_info_score(labels_true, labels_pred, contingency=None)

2025-01-10 15:47:30
random_projection.GaussianRandomProjection()
  • References/Python/scikit-learn/API Reference/random_projection

class sklearn.random_projection.GaussianRandomProjection(n_components='auto', eps=0.1, random_state=None)

2025-01-10 15:47:30