Two-class AdaBoost
  • References/Python/scikit-learn/Examples/Ensemble methods

This example fits an AdaBoosted decision stump on a non-linearly separable classification dataset composed of two ?Gaussian quantiles? clusters (see

2025-01-10 15:47:30
Segmenting the picture of a raccoon face in regions
  • References/Python/scikit-learn/Examples/Clustering

This example uses

2025-01-10 15:47:30
Comparison of F-test and mutual information
  • References/Python/scikit-learn/Examples/Feature Selection

This example illustrates the differences between univariate F-test statistics and mutual information. We consider 3 features x_1, x_2, x_3

2025-01-10 15:47:30
sklearn.datasets.load_svmlight_file()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.load_svmlight_file(f, n_features=None, dtype=, multilabel=False, zero_based='auto', query_id=False)

2025-01-10 15:47:30
ensemble.RandomForestClassifier()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1

2025-01-10 15:47:30
sklearn.model_selection.learning_curve()
  • References/Python/scikit-learn/API Reference/model_selection

sklearn.model_selection.learning_curve(estimator, X, y, groups=None, train_sizes=array([ 0.1, 0.33, 0.55, 0.78, 1. ]), cv=None

2025-01-10 15:47:30
Species distribution modeling
  • References/Python/scikit-learn/Examples/Examples based on real world datasets

Modeling species? geographic distributions is an important problem in conservation biology. In this example we model the geographic distribution of two south american

2025-01-10 15:47:30
sklearn.metrics.pairwise.pairwise_kernels()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.pairwise_kernels(X, Y=None, metric='linear', filter_params=False, n_jobs=1, **kwds)

2025-01-10 15:47:30
linear_model.MultiTaskElasticNet()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.MultiTaskElasticNet(alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, copy_X=True,

2025-01-10 15:47:30
sklearn.svm.libsvm.fit()
  • References/Python/scikit-learn/API Reference/svm

sklearn.svm.libsvm.fit() Train the model using libsvm (low-level method)

2025-01-10 15:47:30