cross_decomposition.CCA()
  • References/Python/scikit-learn/API Reference/cross_decomposition

class sklearn.cross_decomposition.CCA(n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True)

2025-01-10 15:47:30
Kernel Density Estimation
  • References/Python/scikit-learn/Examples/Nearest Neighbors

This example shows how kernel density estimation (KDE), a powerful non-parametric density estimation technique, can be used to learn a generative model for a dataset

2025-01-10 15:47:30
sklearn.datasets.dump_svmlight_file()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.dump_svmlight_file(X, y, f, zero_based=True, comment=None, query_id=None, multilabel=False)

2025-01-10 15:47:30
Agglomerative clustering with and without structure
  • References/Python/scikit-learn/Examples/Clustering

This example shows the effect of imposing a connectivity graph to capture local structure in the data. The graph is simply the graph of 20

2025-01-10 15:47:30
sklearn.model_selection.validation_curve()
  • References/Python/scikit-learn/API Reference/model_selection

sklearn.model_selection.validation_curve(estimator, X, y, param_name, param_range, groups=None, cv=None, scoring=None,

2025-01-10 15:47:30
linear_model.LassoCV()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.LassoCV(eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000

2025-01-10 15:47:30
sklearn.datasets.make_blobs()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None)

2025-01-10 15:47:30
gaussian_process.kernels.Product()
  • References/Python/scikit-learn/API Reference/gaussian_process

class sklearn.gaussian_process.kernels.Product(k1, k2)

2025-01-10 15:47:30
decomposition.ProjectedGradientNMF()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.ProjectedGradientNMF(*args, **kwargs)

2025-01-10 15:47:30
sklearn.metrics.adjusted_mutual_info_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.adjusted_mutual_info_score(labels_true, labels_pred)

2025-01-10 15:47:30