covariance.EmpiricalCovariance()
  • References/Python/scikit-learn/API Reference/covariance

class sklearn.covariance.EmpiricalCovariance(store_precision=True, assume_centered=False)

2025-01-10 15:47:30
gaussian_process.GaussianProcessRegressor()
  • References/Python/scikit-learn/API Reference/gaussian_process

class sklearn.gaussian_process.GaussianProcessRegressor(kernel=None, alpha=1e-10, optimizer='fmin_l_bfgs_b', n_restarts_optimizer=0

2025-01-10 15:47:30
preprocessing.MaxAbsScaler()
  • References/Python/scikit-learn/API Reference/preprocessing

class sklearn.preprocessing.MaxAbsScaler(copy=True)

2025-01-10 15:47:30
model_selection.LeavePOut()
  • References/Python/scikit-learn/API Reference/model_selection

class sklearn.model_selection.LeavePOut(p)

2025-01-10 15:47:30
Feature agglomeration
  • References/Python/scikit-learn/Examples/Clustering

These images how similar features are merged together using feature agglomeration.

2025-01-10 15:47:30
mixture.BayesianGaussianMixture()
  • References/Python/scikit-learn/API Reference/mixture

class sklearn.mixture.BayesianGaussianMixture(n_components=1, covariance_type='full', tol=0.001, reg_covar=1e-06, max_iter=100

2025-01-10 15:47:30
linear_model.Lars()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.Lars(fit_intercept=True, verbose=False, normalize=True, precompute='auto', n_nonzero_coefs=500, eps=2.2204460492503131e-16

2025-01-10 15:47:30
Decision Tree Regression with AdaBoost
  • References/Python/scikit-learn/Examples/Ensemble methods

A decision tree is boosted using the AdaBoost.R2 [1] algorithm on a 1D sinusoidal dataset with a small amount of Gaussian noise. 299 boosts (300 decision

2025-01-10 15:47:30
base.TransformerMixin
  • References/Python/scikit-learn/API Reference/base

class sklearn.base.TransformerMixin

2025-01-10 15:47:30
Outlier detection with several methods.
  • References/Python/scikit-learn/Examples/Covariance estimation

When the amount of contamination is known, this example illustrates three different ways of performing

2025-01-10 15:47:30