Non-linear SVM
  • References/Python/scikit-learn/Examples/Support Vector Machines

Perform binary classification using non-linear SVC with RBF kernel. The target to predict is a XOR of the inputs. The color map illustrates the decision function learned

2025-01-10 15:47:30
Gaussian process regression with noise-level estimation
  • References/Python/scikit-learn/Examples/Gaussian Process for Machine Learning

This example illustrates that GPR with a sum-kernel including a WhiteKernel can estimate the noise level of data. An illustration

2025-01-10 15:47:30
Compare Stochastic learning strategies for MLPClassifier
  • References/Python/scikit-learn/Examples/Neural Networks

This example visualizes some training loss curves for different stochastic learning strategies, including SGD and Adam. Because of time-constraints

2025-01-10 15:47:30
sklearn.grid_search.fit_grid_point()
  • References/Python/scikit-learn/API Reference/grid_search

Warning DEPRECATED

2025-01-10 15:47:30
linear_model.LogisticRegressionCV()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.LogisticRegressionCV(Cs=10, fit_intercept=True, cv=None, dual=False, penalty='l2', scoring=None

2025-01-10 15:47:30
1.12.
  • References/Python/scikit-learn/Guide

Warning All classifiers in scikit-learn do multiclass classification

2025-01-10 15:47:30
linear_model.LassoLarsCV()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.LassoLarsCV(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv=None

2025-01-10 15:47:30
linear_model.Lars()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.Lars(fit_intercept=True, verbose=False, normalize=True, precompute='auto', n_nonzero_coefs=500, eps=2.2204460492503131e-16

2025-01-10 15:47:30
Digits Classification Exercise
  • References/Python/scikit-learn/Examples/Tutorial exercises

A tutorial exercise regarding the use of classification techniques on the Digits dataset. This exercise is used in the

2025-01-10 15:47:30
calibration.CalibratedClassifierCV()
  • References/Python/scikit-learn/API Reference/calibration

class sklearn.calibration.CalibratedClassifierCV(base_estimator=None, method='sigmoid', cv=3)

2025-01-10 15:47:30