Shrinkage covariance estimation
  • References/Python/scikit-learn/Examples/Covariance estimation

When working with covariance estimation, the usual approach is to use a maximum likelihood estimator, such as the

2025-01-10 15:47:30
sklearn.datasets.make_biclusters()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_biclusters(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None)

2025-01-10 15:47:30
Robust covariance estimation and Mahalanobis distances relevance
  • References/Python/scikit-learn/Examples/Covariance estimation

An example to show covariance estimation with the Mahalanobis distances on Gaussian distributed data. For Gaussian distributed

2025-01-10 15:47:30
sklearn.metrics.pairwise.polynomial_kernel()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.polynomial_kernel(X, Y=None, degree=3, gamma=None, coef0=1)

2025-01-10 15:47:30
1.12.
  • References/Python/scikit-learn/Guide

Warning All classifiers in scikit-learn do multiclass classification

2025-01-10 15:47:30
sklearn.metrics.pairwise.additive_chi2_kernel()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.additive_chi2_kernel(X, Y=None)

2025-01-10 15:47:30
sklearn.metrics.pairwise.distance_metrics()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.distance_metrics()

2025-01-10 15:47:30
sklearn.metrics.mutual_info_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.mutual_info_score(labels_true, labels_pred, contingency=None)

2025-01-10 15:47:30
Plot multi-class SGD on the iris dataset
  • References/Python/scikit-learn/Examples/Generalized Linear Models

Plot decision surface of multi-class SGD on iris dataset. The hyperplanes corresponding to the three one-versus-all (OVA) classifiers are represented

2025-01-10 15:47:30
linear_model.MultiTaskLassoCV()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.MultiTaskLassoCV(eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, max_iter=1000

2025-01-10 15:47:30