covariance.GraphLassoCV()
  • References/Python/scikit-learn/API Reference/covariance

class sklearn.covariance.GraphLassoCV(alphas=4, n_refinements=4, cv=None, tol=0.0001, enet_tol=0.0001, max_iter=100, mode='cd', n_jobs=1

2025-01-10 15:47:30
feature_selection.GenericUnivariateSelect()
  • References/Python/scikit-learn/API Reference/feature_selection

class sklearn.feature_selection.GenericUnivariateSelect(score_func=, mode='percentile', param=1e-05)

2025-01-10 15:47:30
sklearn.feature_extraction.image.grid_to_graph()
  • References/Python/scikit-learn/API Reference/feature_extraction

sklearn.feature_extraction.image.grid_to_graph(n_x, n_y, n_z=1, mask=None, return_as=, dtype=)

2025-01-10 15:47:30
A demo of the Spectral Co-Clustering algorithm
  • References/Python/scikit-learn/Examples/Biclustering

This example demonstrates how to generate a dataset and bicluster it using the Spectral Co-Clustering algorithm. The dataset is generated

2025-01-10 15:47:30
model_selection.PredefinedSplit()
  • References/Python/scikit-learn/API Reference/model_selection

class sklearn.model_selection.PredefinedSplit(test_fold)

2025-01-10 15:47:30
Theil-Sen Regression
  • References/Python/scikit-learn/Examples/Generalized Linear Models

Computes a Theil-Sen Regression on a synthetic dataset. See

2025-01-10 15:47:30
semi_supervised.LabelPropagation()
  • References/Python/scikit-learn/API Reference/semi_supervised

class sklearn.semi_supervised.LabelPropagation(kernel='rbf', gamma=20, n_neighbors=7, alpha=1, max_iter=30, tol=0.001, n_jobs=1)

2025-01-10 15:47:30
sklearn.preprocessing.maxabs_scale()
  • References/Python/scikit-learn/API Reference/preprocessing

sklearn.preprocessing.maxabs_scale(X, axis=0, copy=True)

2025-01-10 15:47:30
sklearn.datasets.make_s_curve()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_s_curve(n_samples=100, noise=0.0, random_state=None)

2025-01-10 15:47:30
Using FunctionTransformer to select columns
  • References/Python/scikit-learn/Examples/Preprocessing

Shows how to use a function transformer in a pipeline. If you know your dataset?s first principle component is irrelevant for a classification task

2025-01-10 15:47:30