Plot decision surface of multi-class SGD on iris dataset. The hyperplanes corresponding to the three one-versus-all (OVA) classifiers are represented by the dashed lines.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | print (__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.linear_model import SGDClassifier # import some data to play with iris = datasets.load_iris() X = iris.data[:, : 2 ] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target colors = "bry" # shuffle idx = np.arange(X.shape[ 0 ]) np.random.seed( 13 ) np.random.shuffle(idx) X = X[idx] y = y[idx] # standardize mean = X.mean(axis = 0 ) std = X.std(axis = 0 ) X = (X - mean) / std h = . 02 # step size in the mesh clf = SGDClassifier(alpha = 0.001 , n_iter = 100 ).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0 ]. min () - 1 , X[:, 0 ]. max () + 1 y_min, y_max = X[:, 1 ]. min () - 1 , X[:, 1 ]. max () + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap = plt.cm.Paired) plt.axis( 'tight' ) # Plot also the training points for i, color in zip (clf.classes_, colors): idx = np.where(y = = i) plt.scatter(X[idx, 0 ], X[idx, 1 ], c = color, label = iris.target_names[i], cmap = plt.cm.Paired) plt.title( "Decision surface of multi-class SGD" ) plt.axis( 'tight' ) # Plot the three one-against-all classifiers xmin, xmax = plt.xlim() ymin, ymax = plt.ylim() coef = clf.coef_ intercept = clf.intercept_ def plot_hyperplane(c, color): def line(x0): return ( - (x0 * coef[c, 0 ]) - intercept[c]) / coef[c, 1 ] plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls = "--" , color = color) for i, color in zip (clf.classes_, colors): plot_hyperplane(i, color) plt.legend() plt.show() |
Total running time of the script: (0 minutes 0.140 seconds)
Download Python source code:
plot_sgd_iris.py
Download IPython notebook:
plot_sgd_iris.ipynb
Please login to continue.