class sklearn.semi_supervised.LabelPropagation(kernel='rbf', gamma=20, n_neighbors=7, alpha=1, max_iter=30, tol=0.001, n_jobs=1)
sklearn.preprocessing.maxabs_scale(X, axis=0, copy=True)
sklearn.datasets.make_s_curve(n_samples=100, noise=0.0, random_state=None)
Shows how to use a function transformer in a pipeline. If you know your dataset?s first principle component is irrelevant for a classification task
sklearn.linear_model.lars_path(X, y, Xy=None, Gram=None, max_iter=500, alpha_min=0, method='lar', copy_X=True, eps=2.2204460492503131e-16
sklearn.svm.l1_min_c(X, y, loss='squared_hinge', fit_intercept=True, intercept_scaling=1.0)
Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes? theorem with the ?naive? assumption of independence between every pair of features. Given
This example reproduces Figure 1 of Zhu et al [1] and shows how boosting can improve prediction accuracy on a multi-class problem. The classification dataset
Warning DEPRECATED
Perform binary classification using non-linear SVC with RBF kernel. The target to predict is a XOR of the inputs. The color map illustrates the decision function learned
Page 40 of 70