semi_supervised.LabelPropagation()
  • References/Python/scikit-learn/API Reference/semi_supervised

class sklearn.semi_supervised.LabelPropagation(kernel='rbf', gamma=20, n_neighbors=7, alpha=1, max_iter=30, tol=0.001, n_jobs=1)

2025-01-10 15:47:30
sklearn.preprocessing.maxabs_scale()
  • References/Python/scikit-learn/API Reference/preprocessing

sklearn.preprocessing.maxabs_scale(X, axis=0, copy=True)

2025-01-10 15:47:30
sklearn.datasets.make_s_curve()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_s_curve(n_samples=100, noise=0.0, random_state=None)

2025-01-10 15:47:30
Using FunctionTransformer to select columns
  • References/Python/scikit-learn/Examples/Preprocessing

Shows how to use a function transformer in a pipeline. If you know your dataset?s first principle component is irrelevant for a classification task

2025-01-10 15:47:30
sklearn.linear_model.lars_path()
  • References/Python/scikit-learn/API Reference/linear_model

sklearn.linear_model.lars_path(X, y, Xy=None, Gram=None, max_iter=500, alpha_min=0, method='lar', copy_X=True, eps=2.2204460492503131e-16

2025-01-10 15:47:30
sklearn.svm.l1_min_c()
  • References/Python/scikit-learn/API Reference/svm

sklearn.svm.l1_min_c(X, y, loss='squared_hinge', fit_intercept=True, intercept_scaling=1.0)

2025-01-10 15:47:30
1.9.
  • References/Python/scikit-learn/Guide

Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes? theorem with the ?naive? assumption of independence between every pair of features. Given

2025-01-10 15:47:30
Multi-class AdaBoosted Decision Trees
  • References/Python/scikit-learn/Examples/Ensemble methods

This example reproduces Figure 1 of Zhu et al [1] and shows how boosting can improve prediction accuracy on a multi-class problem. The classification dataset

2025-01-10 15:47:30
cross_validation.LeavePOut()
  • References/Python/scikit-learn/API Reference/cross_validation

Warning DEPRECATED

2025-01-10 15:47:30
Non-linear SVM
  • References/Python/scikit-learn/Examples/Support Vector Machines

Perform binary classification using non-linear SVC with RBF kernel. The target to predict is a XOR of the inputs. The color map illustrates the decision function learned

2025-01-10 15:47:30