A decision tree is boosted using the AdaBoost.R2 [1] algorithm on a 1D sinusoidal dataset with a small amount of Gaussian noise. 299 boosts (300 decision trees) is compared with a single decision tree regressor. As the number of boosts is increased the regressor can fit more detail.
[1] |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | print (__doc__) # Author: Noel Dawe <noel.dawe@gmail.com> # # License: BSD 3 clause # importing necessary libraries import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import AdaBoostRegressor # Create the dataset rng = np.random.RandomState( 1 ) X = np.linspace( 0 , 6 , 100 )[:, np.newaxis] y = np.sin(X).ravel() + np.sin( 6 * X).ravel() + rng.normal( 0 , 0.1 , X.shape[ 0 ]) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth = 4 ) regr_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth = 4 ), n_estimators = 300 , random_state = rng) regr_1.fit(X, y) regr_2.fit(X, y) # Predict y_1 = regr_1.predict(X) y_2 = regr_2.predict(X) # Plot the results plt.figure() plt.scatter(X, y, c = "k" , label = "training samples" ) plt.plot(X, y_1, c = "g" , label = "n_estimators=1" , linewidth = 2 ) plt.plot(X, y_2, c = "r" , label = "n_estimators=300" , linewidth = 2 ) plt.xlabel( "data" ) plt.ylabel( "target" ) plt.title( "Boosted Decision Tree Regression" ) plt.legend() plt.show() |
Total running time of the script: (0 minutes 0.742 seconds)
Download Python source code:
plot_adaboost_regression.py
Download IPython notebook:
plot_adaboost_regression.ipynb
Please login to continue.