This example illustrates that GPR with a sum-kernel including a WhiteKernel can estimate the noise level of data. An illustration of the log-marginal-likelihood (LML) landscape shows that there exist two local maxima of LML. The first corresponds to a model with a high noise level and a large length scale, which explains all variations in the data by noise. The second one has a smaller noise level and shorter length scale, which explains most of the variation by the noise-free functional relationship. The second model has a higher likelihood; however, depending on the initial value for the hyperparameters, the gradient-based optimization might also converge to the high-noise solution. It is thus important to repeat the optimization several times for different initializations.
print(__doc__) # Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de> # # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import LogNorm from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF, WhiteKernel rng = np.random.RandomState(0) X = rng.uniform(0, 5, 20)[:, np.newaxis] y = 0.5 * np.sin(3 * X[:, 0]) + rng.normal(0, 0.5, X.shape[0]) # First run plt.figure(0) kernel = 1.0 * RBF(length_scale=100.0, length_scale_bounds=(1e-2, 1e3)) \ + WhiteKernel(noise_level=1, noise_level_bounds=(1e-10, 1e+1)) gp = GaussianProcessRegressor(kernel=kernel, alpha=0.0).fit(X, y) X_ = np.linspace(0, 5, 100) y_mean, y_cov = gp.predict(X_[:, np.newaxis], return_cov=True) plt.plot(X_, y_mean, 'k', lw=3, zorder=9) plt.fill_between(X_, y_mean - np.sqrt(np.diag(y_cov)), y_mean + np.sqrt(np.diag(y_cov)), alpha=0.5, color='k') plt.plot(X_, 0.5*np.sin(3*X_), 'r', lw=3, zorder=9) plt.scatter(X[:, 0], y, c='r', s=50, zorder=10) plt.title("Initial: %s\nOptimum: %s\nLog-Marginal-Likelihood: %s" % (kernel, gp.kernel_, gp.log_marginal_likelihood(gp.kernel_.theta))) plt.tight_layout() # Second run plt.figure(1) kernel = 1.0 * RBF(length_scale=1.0, length_scale_bounds=(1e-2, 1e3)) \ + WhiteKernel(noise_level=1e-5, noise_level_bounds=(1e-10, 1e+1)) gp = GaussianProcessRegressor(kernel=kernel, alpha=0.0).fit(X, y) X_ = np.linspace(0, 5, 100) y_mean, y_cov = gp.predict(X_[:, np.newaxis], return_cov=True) plt.plot(X_, y_mean, 'k', lw=3, zorder=9) plt.fill_between(X_, y_mean - np.sqrt(np.diag(y_cov)), y_mean + np.sqrt(np.diag(y_cov)), alpha=0.5, color='k') plt.plot(X_, 0.5*np.sin(3*X_), 'r', lw=3, zorder=9) plt.scatter(X[:, 0], y, c='r', s=50, zorder=10) plt.title("Initial: %s\nOptimum: %s\nLog-Marginal-Likelihood: %s" % (kernel, gp.kernel_, gp.log_marginal_likelihood(gp.kernel_.theta))) plt.tight_layout() # Plot LML landscape plt.figure(2) theta0 = np.logspace(-2, 3, 49) theta1 = np.logspace(-2, 0, 50) Theta0, Theta1 = np.meshgrid(theta0, theta1) LML = [[gp.log_marginal_likelihood(np.log([0.36, Theta0[i, j], Theta1[i, j]])) for i in range(Theta0.shape[0])] for j in range(Theta0.shape[1])] LML = np.array(LML).T vmin, vmax = (-LML).min(), (-LML).max() vmax = 50 plt.contour(Theta0, Theta1, -LML, levels=np.logspace(np.log10(vmin), np.log10(vmax), 50), norm=LogNorm(vmin=vmin, vmax=vmax)) plt.colorbar() plt.xscale("log") plt.yscale("log") plt.xlabel("Length-scale") plt.ylabel("Noise-level") plt.title("Log-marginal-likelihood") plt.tight_layout() plt.show()
Total running time of the script: (0 minutes 10.387 seconds)
plot_gpr_noisy.py
plot_gpr_noisy.ipynb
Please login to continue.